PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Copper-Boosting Compounds: a Novel Concept for Antimycobacterial Drug Discovery 
We and others recently identified copper resistance as important for virulence of Mycobacterium tuberculosis. Here, we introduce a high-throughput screening assay for agents that induce a copper hypersensitivity phenotype in M. tuberculosis and demonstrate that such copper-boosting compounds are effective against replicating and nonreplicating M. tuberculosis strains.
doi:10.1128/AAC.01781-12
PMCID: PMC3553712  PMID: 23254420
2.  Nanoscopic surfactant behavior of the porin MspA in aqueous media 
Summary
The mycobacterial porin MspA is one of the most stable channel proteins known to date. MspA forms vesicles at low concentrations in aqueous buffers. Evidence from dynamic light scattering, transmission electron microscopy and zeta-potential measurements by electrophoretic light scattering indicate that MspA behaves like a nanoscale surfactant. The extreme thermostability of MspA allows these investigations to be carried out at temperatures as high as 343 K, at which most other proteins would quickly denature. The principles of vesicle formation of MspA as a function of temperature and the underlying thermodynamic factors are discussed here. The results obtained provide crucial evidence in support of the hypothesis that, during vesicle formation, nanoscopic surfactant molecules, such as MspA, deviate from the principles underlined in classical surface chemistry.
doi:10.3762/bjnano.4.30
PMCID: PMC3678404  PMID: 23766950
charge-interaction; hydrophobic interaction; liposome-type cluster; protein cluster; supramolecular; temperature influence; zeta potential
3.  A Cell-Delivered and –Activated SN38-Dextran Prodrug Increases Survival in a Murine Disseminated Pancreatic Cancer Model 
Enzyme activated prodrugs have been investigated and sought after as highly specific, low side effect treatments, especially for cancer therapy. Unfortunately, excellent targets for enzyme activated therapy are rare. Here we demonstrate a system based on cell delivery that can carry both a prodrug and an activating enzyme to the cancer site. Raw264.7 cells (mouse monocyte/macrophage like cells, Mo/Ma) were engineered to express intracellular rabbit carboxylesterase (InCE), which is a potent activator of the prodrug irinotecan to SN38. InCE expression was regulated by the TetOn® system, which silences the gene unless a tetracycline, such as doxycycline, is present. Concurrently, an irinotecan-like prodrug, conjugated to dextran, was synthesized that could be loaded into the cytoplasm of Mo/Ma. To test the system, a murine pancreatic cancer model was generated by intraperitoneal (i.p.) injection of Pan02 cells. Engineered Mo/Ma were loaded with the prodrug and were injected i.p. Two days later, doxycycline was given i.p. to activate InCE, which activated the prodrug. A survival study demonstrated that this system significantly increased survival in a murine pancreatic cancer model. Thus, for the first time, a prodrug/activating enzyme system self-contained within tumor-homing cells has been demonstrated that can prolong the life of i.p. pancreatic tumor bearing mice.
doi:10.1002/smll.201101879
PMCID: PMC3583224  PMID: 22238072
Prodrug Therapy; Cytotherapy; Pancreatic Cancer; Cancer Targeting
4.  Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages 
Summary
The targeted delivery of therapeutics to the tumor site is highly desirable in cancer treatment, because it is capable of minimizing collateral damage. Herein, we report the synthesis of a nanoplatform, which is composed of a 15 ± 1 nm diameter core/shell Fe/Fe3O4 magnetic nanoparticles (MNPs) and the topoisomerase I blocker SN38 bound to the surface of the MNPs via a carboxylesterase cleavable linker. This nanoplatform demonstrated high heating ability (SAR = 522 ± 40 W/g) in an AC-magnetic field. For the purpose of targeted delivery, this nanoplatform was loaded into tumor-homing double-stable RAW264.7 cells (mouse monocyte/macrophage-like cells (Mo/Ma)), which have been engineered to express intracellular carboxylesterase (InCE) upon addition of doxycycline by a Tet-On Advanced system. The nanoplatform was taken up efficiently by these tumor-homing cells. They showed low toxicity even at high nanoplatform concentration. SN38 was released successfully by switching on the Tet-On Advanced system. We have demonstrated that this nanoplatform can be potentially used for thermochemotherapy. We will be able to achieve the following goals: (1) Specifically deliver the SN38 prodrug and magnetic nanoparticles to the cancer site as the payload of tumor-homing double-stable RAW264.7 cells; (2) Release of chemotherapeutic SN38 at the cancer site by means of the self-containing Tet-On Advanced system; (3) Provide localized magnetic hyperthermia to enhance the cancer treatment, both by killing cancer cells through magnetic heating and by activating the immune system.
doi:10.3762/bjnano.3.51
PMCID: PMC3388369  PMID: 23016149
cell-based delivery; chemotherapeutic prodrug; magnetic Fe/Fe3O4 nanoparticles; SN38
5.  Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model 
Using magnetic nanoparticles to absorb alternating magnetic field energy as a method of generating localized hyperthermia has been shown to be a potential cancer treatment. This report demonstrates a system that uses tumor homing cells to actively carry iron/iron oxide nanoparticles into tumor tissue for alternating magnetic field treatment. Paramagnetic iron/ iron oxide nanoparticles were synthesized and loaded into RAW264.7 cells (mouse monocyte/ macrophage-like cells), which have been shown to be tumor homing cells. A murine model of disseminated peritoneal pancreatic cancer was then generated by intraperitoneal injection of Pan02 cells. After tumor development, monocyte/macrophage-like cells loaded with iron/ iron oxide nanoparticles were injected intraperitoneally and allowed to migrate into the tumor. Three days after injection, mice were exposed to an alternating magnetic field for 20 minutes to cause the cell-delivered nanoparticles to generate heat. This treatment regimen was repeated three times. A survival study demonstrated that this system can significantly increase survival in a murine pancreatic cancer model, with an average post-tumor insertion life expectancy increase of 31%. This system has the potential to become a useful method for specifically and actively delivering nanoparticles for local hyperthermia treatment of cancer.
doi:10.2147/IJN.S28344
PMCID: PMC3265998  PMID: 22287840
cytotherapy; pancreatic cancer; disseminated peritoneal carcinomatosis; targeted magnetic hyperthermia; nanoparticles
6.  A self-contained enzyme activating prodrug cytotherapy for preclinical melanoma 
Molecular biology reports  2011;39(1):157-165.
Gene-directed enzyme prodrug therapy (GDEPT) has been investigated as a means of cancer treatment without affecting normal tissues. This system is based on the delivery of a suicide gene, a gene encoding an enzyme which is able to convert its substrate from non-toxic prodrug to cytotoxin. In this experiment, we have developed a targeted suicide gene therapeutic system that is completely contained within tumor-tropic cells and have tested this system for melanoma therapy in a preclinical model. First, we established double stable RAW264.7 monocyte/macrophage-like cells (Mo/Ma) containing a Tet-On® Advanced system for intracellular carboxylesterase (InCE) expression. Second, we loaded a prodrug into the delivery cells, double stable Mo/Ma. Third, we activated the enzyme system to convert the prodrug, irinotecan, to the cytotoxin, SN-38. Our double stable Mo/Ma homed to the lung melanomas after 1 day and successfully delivered the prodrug-activating enzyme/prodrug package to the tumors. We observed that our system significantly reduced tumor weights and numbers as targeted tumor therapy after activation of the InCE. Therefore, we propose that this system may be a useful targeted melanoma therapy system for pulmonary metastatic tumors with minimal side effects, particularly if it is combined with other treatments.
doi:10.1007/s11033-011-0720-7
PMCID: PMC3222711  PMID: 21567204
B16-F10; Mouse lung melanoma; Mouse monocytes; Targeted cell delivery; Suicide therapy

Results 1-6 (6)