PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Self-assembly of octadecyltrichlorosilane: Surface structures formed using different protocols of particle lithography 
Summary
Particle lithography offers generic capabilities for the high-throughput fabrication of nanopatterns from organosilane self-assembled monolayers, which offers the opportunity to study surface-based chemical reactions at the molecular level. Nanopatterns of octadecyltrichlorosilane (OTS) were prepared on surfaces of Si(111) using designed protocols of particle lithography combined with either vapor deposition, immersion, or contact printing. Changing the physical approaches for applying molecules to masked surfaces produced OTS nanostructures with different shapes and heights. Ring nanostructures, nanodots and uncovered pores of OTS were prepared using three protocols, with OTS surface coverage ranging from 10% to 85%. Thickness measurements from AFM cursor profiles were used to evaluate the orientation and density of the OTS nanostructures. Differences in the thickness and morphology of the OTS nanostructures are disclosed based on atomic force microscopy (AFM) images. Images of OTS nanostructures prepared on Si(111) that were generated by the different approaches provide insight into the self-assembly mechanism of OTS, and particularly into the role of water and solvents in hydrolysis and silanation.
doi:10.3762/bjnano.3.12
PMCID: PMC3304319  PMID: 22428102
atomic force microscopy; nanopatterning; nanostructures; octadecyltrichlorosilane; particle lithography; self-assembled monolayer; self-assembly
2.  Effects of Peptides Derived from Terminal Modifications of the Aβ Central Hydrophobic Core on Aβ Fibrillization 
ACS Chemical Neuroscience  2010;1(10):661-678.
Considerable research effort has focused on the discovery of mitigators that block the toxicity of the β-amyloid peptide (Aβ) by targeting a specific step involved in Aβ fibrillogenesis and subsequent aggregation. Given that aggregation intermediates are hypothesized to be responsible for Aβ toxicity, such compounds could likely prevent or mitigate aggregation, or alternatively cause further association of toxic oligomers into larger nontoxic aggregates. Herein we investigate the effect of modifications of the KLVFF hydrophobic core of Aβ by replacing N- and C-terminal groups with various polar moieties. Several of these terminal modifications were found to disrupt the formation of amyloid fibrils and in some cases induced the disassembly of preformed fibrils. Significantly, mitigators that incorporate MiniPEG polar groups were found to be effective against Aβ1−40 fibrilligonesis. Previously, we have shown that mitigators incorporating alpha,alpha-disubstituted amino acids (ααAAs) were effective in disrupting fibril formation as well as inducing fibril disassembly. In this work, we further disclose that the number of polar residues (six) and ααAAs (three) in the original mitigator can be reduced without dramatically changing the ability to disrupt Aβ1−40 fibrillization in vitro.
doi:10.1021/cn900019r
PMCID: PMC3368634  PMID: 22778807
Amyloid peptide (Aβ); fibrils; spherical structures; mitigators; assembly; disassembly
3.  Structure−Activity Relationships in Peptide Modulators of β-Amyloid Protein Aggregation: Variation in α,α-Disubstitution Results in Altered Aggregate Size and Morphology 
ACS Chemical Neuroscience  2010;1(9):608-626.
Neuronal cytotoxicity observed in Alzheimer’s disease (AD) is linked to the aggregation of β-amyloid peptide (Aβ) into toxic forms. Increasing evidence points to oligomeric materials as the neurotoxic species, not Aβ fibrils; disruption or inhibition of Aβ self-assembly into oligomeric or fibrillar forms remains a viable therapeutic strategy to reduce Aβ neurotoxicity. We describe the synthesis and characterization of amyloid aggregation mitigating peptides (AAMPs) whose structure is based on the Aβ “hydrophobic core” Aβ17−20, with α,α-disubstituted amino acids (ααAAs) added into this core as potential disrupting agents of fibril self-assembly. The number, positional distribution, and side-chain functionality of ααAAs incorporated into the AAMP sequence were found to influence the resultant aggregate morphology as indicated by ex situ experiments using atomic force microscopy (AFM) and transmission electron microscopy (TEM). For instance, AAMP-5, incorporating a sterically hindered ααAA with a diisobutyl side chain in the core sequence, disrupted Aβ1−40 fibril formation. However, AAMP-6, with a less sterically hindered ααAA with a dipropyl side chain, altered fibril morphology, producing shorter and larger sized fibrils (compared with those of Aβ1−40). Remarkably, ααAA-AAMPs caused disassembly of existing Aβ fibrils to produce either spherical aggregates or protofibrillar structures, suggesting the existence of equilibrium between fibrils and prefibrillar structures.
doi:10.1021/cn100045q
PMCID: PMC3368689  PMID: 22778850
β-Amyloid; Alzheimer’s disease; amyloid aggregation mitigating peptides; α,α-disubstituted amino acids; fibrils; spherical aggregates

Results 1-3 (3)