PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Probing electrons in TiO2 polaronic trap states by IR-absorption: Evidence for the existence of hydrogenic states 
Scientific Reports  2014;4:3808.
An important step in oxide photochemistry, the loading of electrons into shallow trap states, was studied using infrared (IR) spectroscopy on both, rutile TiO2 powders and single-crystal, r-TiO2(110) oriented samples. After UV-irradiation or n-doping by exposure to H-atoms broad IR absorption lines are observed for the powders at around 940 cm−1. For the single crystal substrates, the IR absorption bands arising from an excitation of the trapped electrons into higher-lying final states show additional features not observed in previous work. On the basis of our new, high-resolution data and theoretical studies on the polaron binding energy in rutile we propose that the trap states correspond to polarons and are thus intrinsic in nature. We assign the final states probed by the IR-experiments to hydrogenic states within the polaron potential. Implications of these observations for photochemistry on oxides will be briefly discussed.
doi:10.1038/srep03808
PMCID: PMC3898047  PMID: 24448350
2.  X-ray spectroscopy characterization of self-assembled monolayers of nitrile-substituted oligo(phenylene ethynylene)s with variable chain length 
Summary
Self-assembled monolayers (SAMs) of nitrile-substituted oligo(phenylene ethynylene) thiols (NC-OPEn) with a variable chain length n (n ranging from one to three structural units) on Au(111) were studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy and near-edge absorption fine-structure spectroscopy. The experimental data suggest that the NC-OPEn molecules form well-defined SAMs on Au(111), with all the molecules bound to the substrate through the gold–thiolate anchor and the nitrile tail groups located at the SAM–ambient interface. The packing density in these SAMs was found to be close to that of alkanethiolate monolayers on Au(111), independent of the chain length. Similar behavior was found for the molecular inclination, with an average tilt angle of ~33–36° for all the target systems. In contrast, the average twist of the OPEn backbone (planar conformation) was found to depend on the molecular length, being close to 45° for the films comprising the short OPE chains and ~53.5° for the long chains. Analysis of the data suggests that the attachment of the nitrile moiety, which served as a spectroscopic marker group, to the OPEn backbone did not significantly affect the molecular orientation in the SAMs.
doi:10.3762/bjnano.3.2
PMCID: PMC3304316  PMID: 22428092
nitrile substitution; oligo(phenylene ethynylene); self-assembled monolayers; twist angle; X-ray absorption spectroscopy

Results 1-2 (2)