PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (28)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Oriented growth of porphyrin-based molecular wires on ionic crystals analysed by nc-AFM 
Summary
The growth of molecular assemblies at room temperature on insulating surfaces is one of the main goals in the field of molecular electronics. Recently, the directed growth of porphyrin-based molecular wires on KBr(001) was presented. The molecule–surface interaction associated with a strong dipole moment of the molecules was sufficient to bind them to the surface; while a stabilization of the molecular assemblies was reached due to the intermolecular interaction by π–π binding. Here, we show that the atomic structure of the substrate can control the direction of the wires and consequently, complex molecular assemblies can be formed. The electronic decoupling of the molecules by one or two monolayers of KBr from the Cu(111) substrate is found to be insufficient to enable comparable growth conditions to bulk ionic materials.
doi:10.3762/bjnano.2.4
PMCID: PMC3045942  PMID: 21977413
directed growth; KBr; molecular wires; NaCl; nc-AFM; porphyrin; self assembly
2.  Scanning probe microscopy and related methods 
doi:10.3762/bjnano.1.18
PMCID: PMC3045922  PMID: 21977405
3.  Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid 
Summary
Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles.
doi:10.3762/bjnano.5.4
PMCID: PMC3896269  PMID: 24455460
AM-AFM in liquid; nanodentistry; nanoparticles
4.  Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory 
Summary
In this article, a new higher order shear deformation theory based on trigonometric shear deformation theory is developed. In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates. In the present theory, the transverse shear stresses satisfy the traction free boundary conditions of the rectangular plates and these stresses can be calculated from the constitutive equations. The effects of different parameters such as nonlocal parameter and aspect ratio are investigated on both nondimensional deflections and deflection ratios. It may be important to mention that the present formulations are general and can be used for isotropic, orthotropic and anisotropic nanoplates.
doi:10.3762/bjnano.4.109
PMCID: PMC3896292  PMID: 24455455
nonlocal elasticity theory; rectangular nanoplate; static analysis; trigonometric shear deformation theory
5.  Characterization of electroforming-free titanium dioxide memristors 
Summary
Metal–insulator–metal (MIM) structures based on titanium dioxide have demonstrated reversible and non-volatile resistance-switching behavior and have been identified with the concept of the memristor. Microphysical studies suggest that the development of sub-oxide phases in the material drives the resistance changes. The creation of these phases, however, has a number of negative effects such as requiring an elevated voltage, increasing the device-to-device variability, damaging the electrodes due to oxygen evolution, and ultimately limiting the device lifetime. In this work we show that the deliberate inclusion of a sub-oxide layer in the MIM structure maintains the favorable switching properties of the device, while eliminating many of the negative effects. Electrical and microphysical characterization of the resulting structures was performed, utilizing X-ray and electron spectroscopy and microscopy. In contrast to structures which are not engineered with a sub-oxide layer, we observed dramatically reduced microphysical changes after electrical operation.
doi:10.3762/bjnano.4.55
PMCID: PMC3740802  PMID: 23946916
electron microscopy; memristor; resistance switching; transition-metal oxide; X-ray spectroscopy
6.  Molecular dynamics simulations of mechanical failure in polymorphic arrangements of amyloid fibrils containing structural defects 
Summary
We examine how the different steric packing arrangements found in amyloid fibril polymorphs can modulate their mechanical properties using steered molecular dynamics simulations. Our calculations demonstrate that for fibrils containing structural defects, their ability to resist force in a particular direction can be dominated by both the number and molecular details of the defects that are present. The simulations thereby suggest a hierarchy of factors that govern the mechanical resilience of fibrils, and illustrate the general principles that must be considered when quantifying the mechanical properties of amyloid fibres containing defects.
doi:10.3762/bjnano.4.50
PMCID: PMC3740767  PMID: 23946911
amyloid; fibril fragmentation; steered molecular dynamics (SMD); structural defects
7.  Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes 
Summary
Dye-sensitized solar cells (DSCs) provide a promising third-generation photovoltaic concept based on the spectral sensitization of a wide-bandgap metal oxide. Although the nanocrystalline TiO2 photoelectrode of a DSC consists of sintered nanoparticles, there are few studies on the nanoscale properties. We focus on the microscopic work function and surface photovoltage (SPV) determination of TiO2 photoelectrodes using Kelvin probe force microscopy in combination with a tunable illumination system. A comparison of the surface potentials for TiO2 photoelectrodes sensitized with two different dyes, i.e., the standard dye N719 and a copper(I) bis(imine) complex, reveals an inverse orientation of the surface dipole. A higher surface potential was determined for an N719 photoelectrode. The surface potential increase due to the surface dipole correlates with a higher DSC performance. Concluding from this, microscopic surface potential variations, attributed to the complex nanostructure of the photoelectrode, influence the DSC performance. For both bare and sensitized TiO2 photoelectrodes, the measurements reveal microscopic inhomogeneities of more than 100 mV in the work function and show recombination time differences at different locations. The bandgap of 3.2 eV, determined by SPV spectroscopy, remained constant throughout the TiO2 layer. The effect of the built-in potential on the DSC performance at the TiO2/SnO2:F interface, investigated on a nanometer scale by KPFM measurements under visible light illumination, has not been resolved so far.
doi:10.3762/bjnano.4.49
PMCID: PMC3701424  PMID: 23844348
atomic force microscopy (AFM); dye-sensitized solar cells (DSC); Kelvin probe force microscopy (KPFM); surface photovoltage (SPV); titanium dioxide (TiO2)
8.  A look underneath the SiO2/4H-SiC interface after N2O thermal treatments 
Summary
The electrical compensation effect of the nitrogen incorporation at the SiO2/4H-SiC (p-type) interface after thermal treatments in ambient N2O is investigated employing both scanning spreading resistance microscopy (SSRM) and scanning capacitance microscopy (SCM). SSRM measurements on p-type 4H-SiC areas selectively exposed to N2O at 1150 °C showed an increased resistance compared to the unexposed ones; this indicates the incorporation of electrically active nitrogen-related donors, which compensate the p-type doping in the SiC surface region. Cross-sectional SCM measurements on SiO2/4H-SiC metal/oxide/semiconductor (MOS) devices highlighted different active carrier concentration profiles in the first 10 nm underneath the insulator–substrate interface depending on the SiO2/4H-SiC roughness.
The electrically active incorporated nitrogen produces both a compensation of the acceptors in the substrate and a reduction of the interface state density (D it). This result can be correlated with the 4H-SiC surface configuration. In particular, lower D it values were obtained for a SiO2/SiC interface on faceted SiC than on planar SiC. These effects were explained in terms of the different surface configuration in faceted SiC that enables the simultaneous exposition at the interface of atomic planes with different orientations.
doi:10.3762/bjnano.4.26
PMCID: PMC3628548  PMID: 23616945
4H-SiC; metal/oxide/semiconductor; nitrogen incorporation
9.  Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates 
Summary
Chemical vapour deposition (CVD) on catalytic metals is one of main approaches for high-quality graphene growth over large areas. However, a subsequent transfer step to an insulating substrate is required in order to use the graphene for electronic applications. This step can severely affect both the structural integrity and the electronic properties of the graphene membrane. In this paper, we investigated the morphological and electrical properties of CVD graphene transferred onto SiO2 and on a polymeric substrate (poly(ethylene-2,6-naphthalene dicarboxylate), briefly PEN), suitable for microelectronics and flexible electronics applications, respectively. The electrical properties (sheet resistance, mobility, carrier density) of the transferred graphene as well as the specific contact resistance of metal contacts onto graphene were investigated by using properly designed test patterns. While a sheet resistance R sh ≈ 1.7 kΩ/sq and a specific contact resistance ρc ≈ 15 kΩ·μm have been measured for graphene transferred onto SiO2, about 2.3× higher R sh and about 8× higher ρc values were obtained for graphene on PEN. High-resolution current mapping by torsion resonant conductive atomic force microscopy (TRCAFM) provided an insight into the nanoscale mechanisms responsible for the very high ρc in the case of graphene on PEN, showing a ca. 10× smaller “effective” area for current injection than in the case of graphene on SiO2.
doi:10.3762/bjnano.4.24
PMCID: PMC3628692  PMID: 23616943
conductive AFM; contact resistance; graphene; mobility; PEN; sheet resistance; SiO2
10.  Influence of diffusion on space-charge-limited current measurements in organic semiconductors 
Summary
Numerical simulations of current–voltage curves in electron-only devices are used to discuss the influence of charged defects on the information derived from fitting space-charge-limited current models to the data. Charged, acceptor-like defects lead to barriers impeding the flow of electrons in electron-only devices and therefore lead to a reduced current that is similar to the situation where the device has a built-in voltage. This reduced current will lead to an underestimation of the mobilities and an overestimation of characteristic tail slopes if analytical equations are used to analyze the data. Correcting for the barrier created by the charged defects can, however, be a successful way to still be able to obtain reasonably accurate mobility values.
doi:10.3762/bjnano.4.18
PMCID: PMC3628774  PMID: 23616937
current–voltage curves; electron-only device; drift–diffusion; mobility; simulation; traps
11.  Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation? 
Summary
Single- and multilayer graphene and highly ordered pyrolytic graphite (HOPG) were exposed to a pure hydrogen low-temperature plasma (LTP). Characterizations include various experimental techniques such as photoelectron spectroscopy, Raman spectroscopy and scanning probe microscopy. Our photoemission measurement shows that hydrogen LTP exposed HOPG has a diamond-like valence-band structure, which suggests double-sided hydrogenation. With the scanning tunneling microscopy technique, various atomic-scale charge-density patterns were observed, which may be associated with different C–H conformers. Hydrogen-LTP-exposed graphene on SiO2 has a Raman spectrum in which the D peak to G peak ratio is over 4, associated with hydrogenation on both sides. A very low defect density was observed in the scanning probe microscopy measurements, which enables a reverse transformation to graphene. Hydrogen-LTP-exposed HOPG possesses a high thermal stability, and therefore, this transformation requires annealing at over 1000 °C.
doi:10.3762/bjnano.3.96
PMCID: PMC3556725  PMID: 23365799
graphane; HOPG; hydrogenation; plasma
12.  Nanotribology at high temperatures 
Summary
Recent molecular dynamics simulation results have increased conceptual understanding of the grazing and the ploughing friction at elevated temperatures, particularly near the substrate’s melting point. In this commentary we address a major constraint concerning its experimental verification.
doi:10.3762/bjnano.3.68
PMCID: PMC3458605  PMID: 23019555
CBN; diamond; high temperature
13.  Repulsive bimodal atomic force microscopy on polymers 
Summary
Bimodal atomic force microscopy can provide high-resolution images of polymers. In the bimodal operation mode, two eigenmodes of the cantilever are driven simultaneously. When examining polymers, an effective mechanical contact is often required between the tip and the sample to obtain compositional contrast, so particular emphasis was placed on the repulsive regime of dynamic force microscopy. We thus investigated bimodal imaging on a polystyrene-block-polybutadiene diblock copolymer surface and on polystyrene. The attractive operation regime was only stable when the amplitude of the second eigenmode was kept small compared to the amplitude of the fundamental mode. To clarify the influence of the higher eigenmode oscillation on the image quality, the amplitude ratio of both modes was systematically varied. Fourier analysis of the time series recorded during imaging showed frequency mixing. However, these spurious signals were at least two orders of magnitude smaller than the first two fundamental eigenmodes. Thus, repulsive bimodal imaging of polymer surfaces yields a good signal quality for amplitude ratios smaller than A 01 /A 02 = 10:1 without affecting the topography feedback.
doi:10.3762/bjnano.3.52
PMCID: PMC3388370  PMID: 23016150
bimodal AFM imaging; diblock copolymer; polybutadiene; polystyrene
14.  STM visualisation of counterions and the effect of charges on self-assembled monolayers of macrocycles 
Summary
Despite their importance in self-assembly processes, the influence of charged counterions on the geometry of self-assembled organic monolayers and their direct localisation within the monolayers has been given little attention. Recently, various examples of self-assembled monolayers composed of charged molecules on surfaces have been reported, but no effort has been made to prove the presence of counterions within the monolayer. Here we show that visualisation and exact localisation of counterions within self-assembled monolayers can be achieved with scanning tunnelling microscopy (STM). The presence of charges on the studied shape-persistent macrocycles is shown to have a profound effect on the self-assembly process at the liquid–solid interface. Furthermore, preferential adsorption was observed for the uncharged analogue of the macrocycle on a surface.
doi:10.3762/bjnano.2.72
PMCID: PMC3201620  PMID: 22043456
counterions; liquid–solid interface; macrocycles; scanning tunnelling microscopy; self-assembly
15.  The atomic force microscope as a mechano–electrochemical pen 
Summary
We demonstrate a method that allows the controlled writing of metallic patterns on the nanometer scale using the tip of an atomic force microscope (AFM) as a “mechano–electrochemical pen”. In contrast to previous experiments, no voltage is applied between the AFM tip and the sample surface. Instead, a passivated sample surface is activated locally due to lateral forces between the AFM tip and the sample surface. In this way, the area of tip–sample interaction is narrowly limited by the mechanical contact between tip and sample, and well-defined metallic patterns can be written reproducibly. Nanoscale structures and lines of copper were deposited, and the line widths ranged between 5 nm and 80 nm, depending on the deposition parameters. A procedure for the sequential writing of metallic nanostructures is introduced, based on the understanding of the passivation process. The mechanism of this mechano–electrochemical writing technique is investigated, and the processes of site-selective surface depassivation, deposition, dissolution and repassivation of electrochemically deposited nanoscale metallic islands are studied in detail.
doi:10.3762/bjnano.2.70
PMCID: PMC3201618  PMID: 22043454
atomic force microscopy; deposition; electrochemistry; nanoelectronics; nanofabrication; nanolithography; nanotechnology; NEMS and MEMS; scanning probe lithography
16.  Terthiophene on Au(111): A scanning tunneling microscopy and spectroscopy study 
Summary
Terthiophene (3T) molecules adsorbed on herringbone (HB) reconstructed Au(111) surfaces in the low coverage regime were investigated by means of low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) under ultra-high vacuum conditions. The 3T molecules adsorb preferentially in fcc regions of the HB reconstruction with their longer axis oriented perpendicular to the soliton walls of the HB and at maximum mutual separation. The latter observation points to a repulsive interaction between molecules probably due to parallel electrical dipoles formed during adsorption. Constant-separation (I-V) and constant-current (z-V) STS clearly reveal the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals, which are found at −1.2 eV and +2.3 eV, respectively. The HOMO–LUMO gap corresponds to that of a free molecule, indicating a rather weak interaction between 3T and Au(111). According to conductivity maps, the HOMO and LUMO are inhomogeneously distributed over the adsorbed 3T, with the HOMO being located at the ends of the linear molecule, and the LUMO symmetrically with respect to the longer axis of the molecule at the center of its flanks. Analysis of spectroscopic data reveals details of the contrast mechanism of 3T/Au(111) in STM. For that, the Shockley-like surface state of Au(111) plays an essential role and appears shifted outwards from the surface in the presence of the molecule. As a consequence, the molecule can be imaged even at a tunneling bias within its HOMO–LUMO gap. A more quantitative analysis of this detail resolves a previous discrepancy between the fairly small apparent STM height of 3T molecules (1.4–2.0 nm, depending on tunneling bias) and a corresponding larger value of 3.5 nm based on X-ray standing wave analysis. An additionally observed linear decrease of the differential tunneling barrier at positive bias when determined on top of a 3T molecule is compared to the bias independent barrier obtained on bare Au(111) surfaces. This striking difference of the barrier behavior with and without adsorbed molecules is interpreted as indicating an adsorption-induced dimensionality transition of the involved tunneling processes.
doi:10.3762/bjnano.2.60
PMCID: PMC3190626  PMID: 22003462
Au(111); electronic density of states; STM; STS; terthiophene
17.  Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination 
Summary
The most outstanding feature of scanning force microscopy (SFM) is its capability to detect various different short and long range interactions. In particular, magnetic force microscopy (MFM) is used to characterize the domain configuration in ferromagnetic materials such as thin films grown by physical techniques or ferromagnetic nanostructures. It is a usual procedure to separate the topography and the magnetic signal by scanning at a lift distance of 25–50 nm such that the long range tip–sample interactions dominate. Nowadays, MFM is becoming a valuable technique to detect weak magnetic fields arising from low dimensional complex systems such as organic nanomagnets, superparamagnetic nanoparticles, carbon-based materials, etc. In all these cases, the magnetic nanocomponents and the substrate supporting them present quite different electronic behavior, i.e., they exhibit large surface potential differences causing heterogeneous electrostatic interaction between the tip and the sample that could be interpreted as a magnetic interaction. To distinguish clearly the origin of the tip–sample forces we propose to use a combination of Kelvin probe force microscopy (KPFM) and MFM. The KPFM technique allows us to compensate in real time the electrostatic forces between the tip and the sample by minimizing the electrostatic contribution to the frequency shift signal. This is a great challenge in samples with low magnetic moment. In this work we studied an array of Co nanostructures that exhibit high electrostatic interaction with the MFM tip. Thanks to the use of the KPFM/MFM system we were able to separate the electric and magnetic interactions between the tip and the sample.
doi:10.3762/bjnano.2.59
PMCID: PMC3190625  PMID: 22003461
electrostatic interaction; focused electron beam induced deposition; Kelvin probe force microscopy; magnetic force microscopy; magnetic nanostructures
18.  The role of the cantilever in Kelvin probe force microscopy measurements 
Summary
The role of the cantilever in quantitative Kelvin probe force microscopy (KPFM) is rigorously analyzed. We use the boundary element method to calculate the point spread function of the measuring probe: Tip and cantilever. The calculations show that the cantilever has a very strong effect on the absolute value of the measured contact potential difference even under ultra-high vacuum conditions, and we demonstrate a good agreement between our model and KPFM measurements in ultra-high vacuum of NaCl monolayers grown on Cu(111). The effect of the oscillating cantilever shape on the KPFM resolution and sensitivity has been calculated and found to be relatively small.
doi:10.3762/bjnano.2.29
PMCID: PMC3148059  PMID: 21977437
boundary elements method; cantilever; convolution; Kelvin probe force microscopy; point spread function
19.  Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions 
Summary
One key component in the assembly of nanoparticles is their precise positioning to enable the creation of new complex nano-objects. Controlling the nanoscale interactions is crucial for the prediction and understanding of the behaviour of nanoparticles (NPs) during their assembly. In the present work, we have manipulated bare and functionalized gold nanoparticles on flat and patterned silicon and silicon coated substrates with dynamic atomic force microscopy (AFM). Under ambient conditions, the particles adhere to silicon until a critical drive amplitude is reached by oscillations of the probing tip. Beyond that threshold, the particles start to follow different directions, depending on their geometry, size and adhesion to the substrate. Higher and respectively, lower mobility was observed when the gold particles were coated with methyl (–CH3) and hydroxyl (–OH) terminated thiol groups. This major result suggests that the adhesion of the particles to the substrate is strongly reduced by the presence of hydrophobic interfaces. The influence of critical parameters on the manipulation was investigated and discussed viz. the shape, size and grafting of the NPs, as well as the surface chemistry and the patterning of the substrate, and finally the operating conditions (temperature, humidity and scan velocity). Whereas the operating conditions and substrate structure are shown to have a strong effect on the mobility of the particles, we did not find any differences when manipulating ordered vs random distributed particles.
doi:10.3762/bjnano.2.10
PMCID: PMC3148061  PMID: 21977418
atomic force microscopy; intermolecular interaction; manipulation; nanoparticles; precise positioning; self-assembled monolayers
20.  Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals 
Summary
Magnéli-type vanadium oxides form the homologous series VnO2 n -1 and exhibit a temperature-induced, reversible metal–insulator first order phase transition (MIT). We studied the change of the adhesion force across the transition temperature between the cleavage planes of various vanadium oxide Magnéli phases (n = 3 … 7) and spherical titanium atomic force microscope (AFM) tips by systematic force–distance measurements with a variable-temperature AFM under ultrahigh vacuum conditions (UHV). The results show, for all investigated samples, that crossing the transition temperatures leads to a distinct change of the adhesion force. Low adhesion corresponds consistently to the metallic state. Accordingly, the ability to modify the electronic structure of the vanadium Magnéli phases while maintaining composition, stoichiometry and crystallographic integrity, allows for relating frictional and electronic material properties at the nano scale. This behavior makes the vanadium Magnéli phases interesting candidates for technology, e.g., as intelligent devices or coatings where switching of adhesion or friction is desired.
doi:10.3762/bjnano.2.8
PMCID: PMC3148054  PMID: 21977416
adhesion force; atomic force microscopy; Magnéli phases; metal–insulator transition; vanadium oxide
21.  Review of "Contact Mechanics and Friction: Physical Principles and Applications" by Valentin L. Popov 
doi:10.3762/bjnano.2.7
PMCID: PMC3148062
adhesion; capillarity; contact mechanics; continuum mechanics; friction; lubrication; materials science; structural mechanics; system dynamics; tribology
22.  Single-pass Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials 
Summary
We demonstrate that single-pass Kelvin force microscopy (KFM) and capacitance gradient (dC/dZ) measurements with force gradient detection of tip–sample electrostatic interactions can be performed in the intermittent contact regime in different environments. Such combination provides sensitive detection of the surface potential and capacitance gradient with nanometer-scale spatial resolution as it was verified on self-assemblies of fluoroalkanes and a metal alloy. The KFM and dC/dZ applications to several heterogeneous polymer materials demonstrate the compositional mapping of these samples in dry and humid air as well as in organic vapors. In situ imaging in different environments facilitates recognition of the constituents of multi-component polymer systems due to selective swelling of components.
doi:10.3762/bjnano.2.2
PMCID: PMC3045941  PMID: 21977411
atomic force microscopy; fluoroalkanes; Kelvin force microscopy; surface potential
23.  Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy 
Summary
Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001) and line defects in aluminum oxide on NiAl(110), respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM) and the electronic structure by scanning tunneling spectroscopy (STS). On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.
doi:10.3762/bjnano.2.1
PMCID: PMC3045939  PMID: 21977410
aluminum oxide; charge state; contact potential; defects; domain boundaries; dynamic force microscopy; frequency modulation atomic force microscopy; Kelvin probe force microscopy; magnesium oxide; non-contact atomic force microscopy; scanning tunneling microscopy; thin films; work function
24.  The description of friction of silicon MEMS with surface roughness: virtues and limitations of a stochastic Prandtl–Tomlinson model and the simulation of vibration-induced friction reduction 
Summary
We have replaced the periodic Prandtl–Tomlinson model with an atomic-scale friction model with a random roughness term describing the surface roughness of micro-electromechanical systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and frequency. The results obtained agree very well with measurement data reported previously.
doi:10.3762/bjnano.1.20
PMCID: PMC3045921  PMID: 21977407
MEMS; microscale friction reduction; normal force modulation; stochastic Prandtl–Tomlinson model; surface roughness
25.  A collisional model for AFM manipulation of rigid nanoparticles 
Summary
The trajectories of differently shaped nanoparticles manipulated by atomic force microscopy are related to the scan path of the probing tip. The direction of motion of the nanoparticles is essentially fixed by the distance b between consecutive scan lines. Well-defined formulas are obtained in the case of rigid nanospheres and nanowires. Numeric results are provided for symmetric nanostars. As a result, orienting the fast scan direction perpendicular to the desired direction of motion and reducing b well below the linear size of the particles turns out to be an efficient way to control the nanomanipulation process.
doi:10.3762/bjnano.1.19
PMCID: PMC3045926  PMID: 21977406
atomic force microscopy; nanomanipulation; nanoparticles

Results 1-25 (28)