PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages 
Summary
The targeted delivery of therapeutics to the tumor site is highly desirable in cancer treatment, because it is capable of minimizing collateral damage. Herein, we report the synthesis of a nanoplatform, which is composed of a 15 ± 1 nm diameter core/shell Fe/Fe3O4 magnetic nanoparticles (MNPs) and the topoisomerase I blocker SN38 bound to the surface of the MNPs via a carboxylesterase cleavable linker. This nanoplatform demonstrated high heating ability (SAR = 522 ± 40 W/g) in an AC-magnetic field. For the purpose of targeted delivery, this nanoplatform was loaded into tumor-homing double-stable RAW264.7 cells (mouse monocyte/macrophage-like cells (Mo/Ma)), which have been engineered to express intracellular carboxylesterase (InCE) upon addition of doxycycline by a Tet-On Advanced system. The nanoplatform was taken up efficiently by these tumor-homing cells. They showed low toxicity even at high nanoplatform concentration. SN38 was released successfully by switching on the Tet-On Advanced system. We have demonstrated that this nanoplatform can be potentially used for thermochemotherapy. We will be able to achieve the following goals: (1) Specifically deliver the SN38 prodrug and magnetic nanoparticles to the cancer site as the payload of tumor-homing double-stable RAW264.7 cells; (2) Release of chemotherapeutic SN38 at the cancer site by means of the self-containing Tet-On Advanced system; (3) Provide localized magnetic hyperthermia to enhance the cancer treatment, both by killing cancer cells through magnetic heating and by activating the immune system.
doi:10.3762/bjnano.3.51
PMCID: PMC3388369  PMID: 23016149
cell-based delivery; chemotherapeutic prodrug; magnetic Fe/Fe3O4 nanoparticles; SN38
2.  A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study 
BMC Cancer  2010;10:119.
Background
There is renewed interest in magnetic hyperthermia as a treatment modality for cancer, especially when it is combined with other more traditional therapeutic approaches, such as the co-delivery of anticancer drugs or photodynamic therapy.
Methods
The influence of bimagnetic nanoparticles (MNPs) combined with short external alternating magnetic field (AMF) exposure on the growth of subcutaneous mouse melanomas (B16-F10) was evaluated. Bimagnetic Fe/Fe3O4 core/shell nanoparticles were designed for cancer targeting after intratumoral or intravenous administration. Their inorganic center was protected against rapid biocorrosion by organic dopamine-oligoethylene glycol ligands. TCPP (4-tetracarboxyphenyl porphyrin) units were attached to the dopamine-oligoethylene glycol ligands.
Results
The magnetic hyperthermia results obtained after intratumoral injection indicated that micromolar concentrations of iron given within the modified core-shell Fe/Fe3O4 nanoparticles caused a significant anti-tumor effect on murine B16-F10 melanoma with three short 10-minute AMF exposures. We also observed a decrease in tumor size after intravenous administration of the MNPs followed by three consecutive days of AMF exposure 24 hrs after the MNPs injection.
Conclusions
These results indicate that intratumoral administration of surface modified MNPs can attenuate mouse melanoma after AMF exposure. Moreover, we have found that after intravenous administration of micromolar concentrations, these MNPs are capable of causing an anti-tumor effect in a mouse melanoma model after only a short AMF exposure time. This is a clear improvement to state of the art.
doi:10.1186/1471-2407-10-119
PMCID: PMC2859385  PMID: 20350328
3.  Direct Observation of Gold Nanoparticle Assemblies with the Porin MspA on Mica 
ACS nano  2009;3(2):462-466.
The octameric porin MspA from Mycobacterium smegmatis is sufficiently stable to form a non-membrane-supported stand-alone porin on Mica surfaces. About 98% of all MspA octamers were found to stand upright on Mica, with their periplasmic loop regions bound to the hydrophilic Mica surface. Both, small (d = 3.7 nm) and large (d = 17 nm) gold nanoparticles bind to MspA, however in different positions: small gold nanoparticles bind within the MspA pore, whereas the large gold nanoparticles bind to the upper region of MspA. These experiments demonstrate that gold nanoparticles can be positioned at different, well-defined distances from the underlying surface using the MspA pore as a template. These findings represent a significant step towards the use of electrically insulating stable proteins in combination with metal nanoparticles in nanodevices.
doi:10.1021/nn800786p
PMCID: PMC2657223  PMID: 19236086
MspA from M. smegmatis; AFM (Magnetic AC Mode); Mica; gold-nanoparticle; bio/nanoelectronics

Results 1-3 (3)