Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Analysis and visualization of animal movement 
Biology Letters  2011;8(1):6-9.
The interdisciplinary workshop ‘Analysis and Visualization of Moving Objects’ was held at the Lorentz Centre in Leiden, The Netherlands, from 27 June to 1 July 2011. It brought together international specialists from ecology, computer science and geographical information science actively involved in the exploration, visualization and analysis of moving objects, such as marine reptiles, mammals, birds, storms, ships, cars and pedestrians. The aim was to share expertise, methodologies, data and common questions between different fields, and to work towards making significant advances in movement research. A data challenge based on GPS tracking of lesser black-backed gulls (Larus fuscus) was used to stimulate initial discussions, cross-fertilization between research groups and to serve as an initial focus for activities during the workshop.
PMCID: PMC3259983  PMID: 21865243
GPS; movement ecology; segmentation; tracking; trajectories; visual analytics
2.  High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance 
PLoS ONE  2013;8(1):e52300.
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.
PMCID: PMC3536796  PMID: 23300969
3.  Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines 
Behavioral Ecology  2012;23(5):1089-1101.
A migrating bird’s response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival.
PMCID: PMC3431116  PMID: 22936843
individual-based model; partial compensation; passerine migration; vector orientation; wind drift; wind selectivity
4.  From Sensor Data to Animal Behaviour: An Oystercatcher Example 
PLoS ONE  2012;7(5):e37997.
Animal-borne sensors enable researchers to remotely track animals, their physiological state and body movements. Accelerometers, for example, have been used in several studies to measure body movement, posture, and energy expenditure, although predominantly in marine animals. In many studies, behaviour is often inferred from expert interpretation of sensor data and not validated with direct observations of the animal. The aim of this study was to derive models that could be used to classify oystercatcher (Haematopus ostralegus) behaviour based on sensor data. We measured the location, speed, and tri-axial acceleration of three oystercatchers using a flexible GPS tracking system and conducted simultaneous visual observations of the behaviour of these birds in their natural environment. We then used these data to develop three supervised classification trees of behaviour and finally applied one of the models to calculate time-activity budgets. The model based on accelerometer data developed to classify three behaviours (fly, terrestrial locomotion, and no movement) was much more accurate (cross-validation error = 0.14) than the model based on GPS-speed alone (cross-validation error = 0.35). The most parsimonious acceleration model designed to classify eight behaviours could distinguish five: fly, forage, body care, stand, and sit (cross-validation error = 0.28); other behaviours that were observed, such as aggression or handling of prey, could not be distinguished. Model limitations and potential improvements are discussed. The workflow design presented in this study can facilitate model development, be adapted to a wide range of species, and together with the appropriate measurements, can foster the study of behaviour and habitat use of free living animals throughout their annual routine.
PMCID: PMC3365100  PMID: 22693586
5.  Stochastic atmospheric assistance and the use of emergency staging sites by migrants 
Numerous animals move vast distances through media with stochastic dynamic properties. Avian migrants must cope with variable wind speeds and directions en route, which potentially jeopardize fine-tuned migration routes and itineraries. We show how unpredictable winds affect flight times and the use of an intermediate staging site by red knots (Calidris canutus canutus) migrating from west Africa to the central north Siberian breeding areas via the German Wadden Sea. A dynamic migration model incorporating wind conditions during flight shows that flight durations between Mauritania and the Wadden Sea vary between 2 and 8 days. The number of birds counted at the only known intermediate staging site on the French Atlantic coast was strongly positively correlated with simulated flight times. In addition, particularly light-weight birds occurred at this location. These independent results support the idea that stochastic wind conditions are the main driver of the use of this intermediate stopover site as an emergency staging area. Because of the ubiquity of stochastically varying media, we expect such emergency habitats to exist in many other migratory systems, both airborne and oceanic. Our model provides a tool to quantify the effect of winds and currents en route.
PMCID: PMC2871836  PMID: 20071381
Calidris canutus canutus; conservation; migration; modelling; stopover; wind assistance

Results 1-5 (5)