Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  The Best Timing of Mate Search in Armadillidium vulgare (Isopoda, Oniscidea) 
PLoS ONE  2013;8(3):e57737.
Mate choice is mediated by many components with the criteria varying across the animal kingdom. Chemical cues used for mate attractiveness can also reflect mate quality. Regarding the gregarious species Armadillidium vulgare (isopod crustacean), we tested whether individuals can discriminate conspecifics at two different levels (between sex and physiological status) based on olfactory perception. Tested conspecifics were individuals of the same or opposite sex, with the females at different moult stages. We found that the attractiveness of individuals was mediated by short-distance chemical cues and tested individuals were able to discriminate and prefer individuals of the opposite sex. Moreover, male preference to female increased during their moulting status as they matured. Males were particularly more attracted by females with appearing white calcium plates, which corresponds to the beginning of their higher receptivity period. These differences in attractiveness due to sex and physiological status are likely to shape the composition of aggregates and facilitate mate finding and optimize the reproductive success for both males and females. Thus aggregation pheromones could be linked to sex pheromones in terrestrial isopods.
PMCID: PMC3585876  PMID: 23469225
2.  Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera) 
BMC Genomics  2012;13:558.
Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood) and allo-grooming (where workers remove ectoparasites from nestmates). We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli).
While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects.
These results demonstrate that honey bee genomic responses to immunostimulation are substantially broader than the previously identified canonical immune response pathways, and may mediate the behavioral changes associated with social immunity by orchestrating changes in chemical signaling. These studies lay the groundwork for future research into the genomic responses of honey bees to native honey bee parasites and pathogens.
PMCID: PMC3483235  PMID: 23072398
Honey bees; Immunity; Genomics; Social behavior; Social immunity; Chemical ecology; Cuticular hydrocarbons; Nestmate recognition
3.  Hygienic Behavior, Liquid-Foraging, and Trophallaxis in the Leaf-Cutting Ants, Acromyrmex subterraneus and Acromyrmex octospinosus  
Neotropical leaf-cutting ants (tribe Attini) live in obligate symbiosis with fungus they culture for food. To protect themselves and their fungus garden from pathogens, they minimize the entry of microorganisms through mechanical and chemical means. In this study, focusing on the species Acromyrmex subterraneus and A. octospinosus, (Hymeoptera: Formicidae). Self- and allo-grooming behavior were quantified and it was found that A. octospinosus workers spend less time in self-grooming than A. subterraneus. In the experimental absence of fungus in A. subterraneus, the times spent in these two behaviors are not affected; however workers spend significantly more time immobile. Hygienic and trophallaxis behaviors were examined as well as the possibility that workers exchange food, and the grooming behavior of foraging and non-foraging workers were compared. Behavioral observations revealed that large workers spent more time grooming than small workers, and more than 62% of replete foragers passed collected liquid food via trophallaxis to a nestmate. However, trophallaxis was rarely observed between non-forager workers. These results suggest that trophallaxis permits the exchange of alimentary liquid between colony members, but it is not important for spreading the colony odor signature.
PMCID: PMC3011949  PMID: 20053118
fungus-growing ants; grooming; fungus privation; foragers
4.  Queen reproductive state modulates pheromone production and queen-worker interactions in honeybees 
Behavioral Ecology  2009;20(5):1007-1014.
The mandibular glands of queen honeybees produce a pheromone that modulates many aspects of worker honeybee physiology and behavior and is critical for colony social organization. The exact chemical blend produced by the queen differs between virgin and mated, laying queens. Here, we investigate the role of mating and reproductive state on queen pheromone production and worker responses. Virgin queens, naturally mated queens, and queens instrumentally inseminated with either semen or saline were collected 2 days after mating or insemination. Naturally mated queens had the most activated ovaries and the most distinct chemical profile in their mandibular glands. Instrumentally inseminated queens were intermediate between virgins and naturally mated queens for both ovary activation and chemical profiles. There were no significant differences between semen- and saline-inseminated queens. Workers were preferentially attracted to the mandibular gland extracts from queens with significantly more activated ovaries. These studies suggest that the queen pheromone blend is modulated by the reproductive status of the queens, and workers can detect these subtle differences and are more responsive to queens with higher reproductive potential. Furthermore, it appears as if insemination substance does not strongly affect physiological characteristics of honeybee queens 2 days after insemination, suggesting that the insemination process or volume is responsible for stimulating these early postmating changes in honeybee queens.
PMCID: PMC2744121  PMID: 22476212
behavior; caste; chemical communication; pheromone; reproduction; social insect
5.  Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera) 
BMC Genomics  2008;9:232.
The molecular mechanisms underlying the post-mating behavioral and physiological transitions undergone by females have not been explored in great detail. Honey bees represent an excellent model system in which to address these questions because they exhibit a range of "mating states," with two extremes (virgins and egg-laying, mated queens) that differ dramatically in their behavior, pheromone profiles, and physiology. We used an incompletely-mated mating-state to understand the molecular processes that underlie the transition from a virgin to a mated, egg-laying queen. We used same-aged virgins, queens that mated once but did not initiate egg-laying, and queens that mated once and initiated egg-laying.
Differences in the behavior and physiology among groups correlated with the underlying variance observed in the top 50 predictive genes in the brains and the ovaries. These changes were correlated with either a behaviorally-associated pattern or a physiologically-associated pattern. Overall, these results suggest that the brains and the ovaries of queens are uncoupled or follow different timescales; the initiation of mating triggers immediate changes in the ovaries, while changes in the brain may require additional stimuli or take a longer time to complete. Comparison of our results to previous studies of post-mating changes in Drosophila melanogaster identified common biological processes affected by mating, including stress response and alternative-splicing pathways. Comparison with microarray data sets related to worker behavior revealed no obvious correlation between genes regulated by mating and genes regulated by behavior/physiology in workers.
Studying the underlying molecular mechanisms of post-mating changes in honey bee queens will not only give us insight into how molecular mechanisms regulate physiological and behavioral changes, but they may also lead to important insights into the evolution of social behavior. Post-mating changes in gene regulation in the brains and ovaries of honey bee queens appear to be triggered by different stimuli and may occur on different timescales, potentially allowing changes in the brains and the ovaries to be uncoupled.
PMCID: PMC2413142  PMID: 18489784
6.  Effects of Insemination Quantity on Honey Bee Queen Physiology 
PLoS ONE  2007;2(10):e980.
Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony.
PMCID: PMC1989138  PMID: 17912357

Results 1-6 (6)