PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (26)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Amygdala response to negative images in postpartum vs nulliparous women and intranasal oxytocin 
The neuroendocrine state of new mothers may alter their neural processing of stressors in the environment through modulatory actions of oxytocin on the limbic system. We predicted that amygdala sensitivity to negatively arousing stimuli would be suppressed in postpartum compared to nulliparous women and that this suppression would be modulated by administration of oxytocin nasal spray. We measured brain activation (fMRI) and subjective arousal in response to negatively arousing pictures in 29 postpartum and 30 nulliparous women who received either oxytocin nasal spray or placebo before scanning. Pre- and post-exposure urinary cortisol levels were also measured. Postpartum women (placebo) demonstrated lower right amygdala activation in response to negative images, lower cortisol and lower negative photo arousal ratings to nulliparous women. Nulliparous women receiving oxytocin had lower right amygdala activation compared to placebo. Cortisol levels in the placebo group, and ratings of arousal across all women, were positively associated with right amygdala activation. Together, these findings demonstrate reductions in both amygdala activation and subjective negative arousal in untreated postpartum vs nulliparous women, supporting the hypothesis of an attenuated neural response to arousing stimuli in postpartum women. A causal role of oxytocin and the timing of potential effects require future investigation.
doi:10.1093/scan/nss100
PMCID: PMC3871727  PMID: 22956670
postpartum; oxytocin; arousal; amygdale; cortisol
2.  Sources of variation in HPG axis reactivity and individually consistent elevation of sex steroids in a female songbird 
General and comparative endocrinology  2013;194:10.1016/j.ygcen.2013.09.015.
Understanding sources of individual differences in steroid hormone production has important implications for the evolution of reproductive and social behaviors. In females in particular, little is known about the mechanistic sources of these individual differences, despite established linkages between sex steroids and a variety of fitness-related traits. Using captive female dark-eyed juncos (Junco hyemalis) from two subspecies, we asked how variation in different components of the hypothalamo-pituitary-gonadal (HPG) axis related to variation in testosterone production among females, and we compared females to males in multiple components of the HPG axis. We demonstrated consistent individual differences in testosterone elevation in response to challenges with luteinizing hormone (LH) and gonadotropin-releasing hormone (GnRH). These hormone challenges led to more LH production but less testosterone production in females than males, and the sexes differed in some but not all measures of sensitivity to hormones along the HPG axis. Similar to findings in males, variation in testosterone production among females was not related to variation in LH production, gonadal LH-receptor mRNA abundance, or hypothalamic abundance of androgen receptor mRNA or aromatase mRNA. Rather, the primary source of individual variation in circulating steroids appears to the gonad, a conclusion further supported by positive correlations between testosterone and estradiol production. Unlike males, females did not differ by subspecies in any of the endocrine parameters that we assessed, suggesting some degree of independent evolution between the two sexes. Our results highlight the sources of physiological variation that may underlie the evolution of hormone-mediated phenotypes in females.
doi:10.1016/j.ygcen.2013.09.015
PMCID: PMC3852689  PMID: 24090613
testosterone; individual differences; hypothalamo-pituitary-gonadal axis; estrogen
3.  Individual variation in testosterone and parental care in a female songbird; the dark-eyed junco (Junco hyemalis) 
Hormones and behavior  2013;64(4):685-692.
Summary
When competition for sex-specific resources overlaps in time with offspring production and care, trade-offs can occur. Steroids hormones, particularly testosterone (T), play a crucial role in mediating such trade-offs in males, often increasing competitive behaviors while decreasing paternal behavior. Recent research has shown that females also face such trade-offs; however, we know little about the role of T in mediating female phenotypes in general, and the role of T in mediating trade-offs in females in particular. Here we examine the relationship between individual variation in maternal effort and endogenous T in the dark-eyed junco, a common songbird. Specifically, we measure circulating T before and after a physiological challenge (injection of gonadotropin releasing hormone, GnRH), and determine whether either measure is related to provisioning, brooding, or the amount of T sequestered in egg yolk. We found that females producing more T in response to a challenge spent less time brooding nestlings, but provisioned nestlings more frequently, and deposited more T in their eggs. These findings suggest that, while T is likely important in mediating maternal phenotypes and female life history tradeoffs, the direction of the relationships between T and phenotype may differ from what is generally observed in males, and that high levels of endogenous T are not necessarily as costly as previous work might suggest.
doi:10.1016/j.yhbeh.2013.09.002
PMCID: PMC4013145  PMID: 24060498
life history tradeoffs; endogenous steroids; testosterone; gonadotropin releasing hormone (GnRH); maternal care; yolk hormones; dark-eyed junco (Junco hyemalis)
4.  Neural steroid sensitivity and aggression: comparing individuals of two songbird subspecies 
Journal of evolutionary biology  2013;26(4):820-831.
Hormones coordinate the expression of complex phenotypes and thus may play important roles in evolutionary processes. When populations diverge in hormone-mediated phenotypes, differences may arise via changes in circulating hormones, sensitivity to hormones, or both. Determining the relative importance of signal and sensitivity requires consideration of both inter- and intra-population variation in hormone levels, hormone sensitivity, and phenotype, but such studies are rare, particularly among closely related taxa. We compared males of two subspecies of the dark-eyed junco (Junco hyemalis) for territorial aggression and associations among behavior, circulating testosterone (T), and gene expression of androgen receptor (AR), aromatase (AROM), and estrogen receptor α in three behaviorally relevant brain regions. Thus, we examined the degree to which evolution may shape behavior via changes in plasma T as compared to key sex steroid binding/converting molecules. We found that the white-winged junco (J. h. aikeni) was more aggressive than the smaller, less ornamented Carolina junco (J. h. carolinensis). The subspecies did not differ in circulating testosterone, but did differ significantly in the abundance of AR and AROM mRNA in key areas of the brain. Within populations, both gene expression and circulating T co-varied significantly and positively with individual differences in aggression. Notably, the differences identified between populations were opposite to those predicted by the patterns among individuals within populations. These findings suggest that hormone-phenotype relationships may evolve via multiple pathways, and that changes that have occurred over evolutionary time do not necessarily reflect standing physiological variation on which current evolutionary processes may act.
doi:10.1111/jeb.12094
PMCID: PMC3622748  PMID: 23517519
Testosterone; aggression; androgen receptor; aromatase; individual variation; divergence; hypothalamus; nucleus taeniae; medial amygdala; ventromedial telencephalon
5.  Lower sexual interest in postpartum women: relationship to amygdala activation and intranasal oxytocin 
Hormones and behavior  2012;63(1):114-121.
During the postpartum period, women experience significant changes in their neuroendocrine profiles and social behavior compared to before pregnancy. A common experience with motherhood is a decrease in sexual desire. Although the lifestyle and peripheral physiological changes associated with parturition might decrease a woman’s sexual interest, we hypothesized that there are also hormone-mediated changes in women’s neural response to sexual and infant stimuli with altered reproductive priorities. We predicted that amygdala activation to sexually arousing stimuli would be suppressed in postpartum versus nulliparous women, and altered with intranasal oxytocin administration. To test this, we measured amygdala activation using fMRI in response to sexually arousing pictures, infant pictures, and neutral pictures in 29 postpartum and 30 nulliparous women. Half of the women received a dose of exogenous oxytocin before scanning. As predicted, nulliparous women subjectively rated sexual pictures to be more arousing, and infant pictures to be less arousing, than did postpartum women. However, nulliparous women receiving the nasal oxytocin spray rated the infant photos as arousing as did postpartum women. Right amygdala activation was lower in postpartum versus nulliparous women in response to sexual, infant, and neutral images, suggesting a generalized decrease in right amygdala responsiveness to arousing images with parturition. There was no difference in right amygdala activation with nasal spray application. Postpartum women therefore appear to experience a decrease in sexual interest possibly as a feature of a more generalized decrease in amygdala responsiveness to arousing stimuli.
doi:10.1016/j.yhbeh.2012.10.007
PMCID: PMC3540189  PMID: 23085496
postpartum; amygdala; sexual desire; oxytocin
6.  Costs and Benefits of Competitive Traits in Females: Aggression, Maternal Care and Reproductive Success 
PLoS ONE  2013;8(10):e77816.
Recent research has shown that female expression of competitive traits can be advantageous, providing greater access to limited reproductive resources. In males increased competitive trait expression often comes at a cost, e.g. trading off with parental effort. However, it is currently unclear whether, and to what extent, females also face such tradeoffs, whether the costs associated with that tradeoff overwhelm the potential benefits of resource acquisition, and how environmental factors might alter those relationships. To address this gap, we examine the relationships between aggression, maternal effort, offspring quality and reproductive success in a common songbird, the dark-eyed junco (Junco hyemalis), over two breeding seasons. We found that compared to less aggressive females, more aggressive females spent less time brooding nestlings, but fed nestlings more frequently. In the year with better breeding conditions, more aggressive females produced smaller eggs and lighter hatchlings, but in the year with poorer breeding conditions they produced larger eggs and achieved greater nest success. There was no relationship between aggression and nestling mass after hatch day in either year. These findings suggest that though females appear to tradeoff competitive ability with some forms of maternal care, the costs may be less than previously thought. Further, the observed year effects suggest that costs and benefits vary according to environmental variables, which may help to account for variation in the level of trait expression.
doi:10.1371/journal.pone.0077816
PMCID: PMC3813731  PMID: 24204980
7.  Boldness behavior and stress physiology in a novel urban environment suggest rapid correlated evolutionary adaptation 
Behavioral Ecology  2012;23(5):960-969 .
Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat.
doi:10.1093/beheco/ars059
PMCID: PMC3431113  PMID: 22936840
adaptation; boldness; corticosterone; evolution; junco; urbanization
8.  Robust behavioral effects of song playback in the absence of testosterone or corticosterone release 
Hormones and behavior  2012;62(4):418-425.
Some species of songbirds elevate testosterone in response to territorial intrusions while others do not. The search for a general explanation for this interspecific variation in hormonal response to social challenges has been impeded by methodological differences among studies. We asked whether song playback alone is sufficient to bring about elevation in testosterone or corticosterone in the dark-eyed junco (Junco hyemalis), a species that has previously demonstrated significant testosterone elevation in response to a simulated territorial intrusion when song was accompanied by a live decoy. We studied two populations of juncos that differ in length of breeding season (6–8 v. 14–16 weeks), and conducted playbacks of high amplitude, long-range song. In one population, we also played low amplitude, short-range song, a highly potent elicitor of aggression in juncos and many songbirds. We observed strong aggressive responses to both types of song, but no detectable elevation of plasma testosterone or corticosterone in either population. We also measured rise in corticosterone in response to handling post-playback, and found full capacity to elevate corticosterone but no effect of song class (long-range or short-range) on elevation. Collectively, our data suggest that males can mount an aggressive response to playback without a change in testosterone or corticosterone, despite the ability to alter these hormones during other types of social interactions. We discuss the observed decoupling of circulating hormones and aggression in relation to mechanisms of behavior and the cues that may activate the HPA and HPG axes.
doi:10.1016/j.yhbeh.2012.07.009
PMCID: PMC3477244  PMID: 22850247
9.  Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco  
F1000Research  2013;2:115.
Recent studies exploring the molecular genetic basis for migratory variation in animals have identified polymorphisms in two genes ( CLOCK and ADCYAP1) that are linked to circadian rhythms and correlate with migratory propensity and phenology among individuals and populations. Results from these initial studies are mixed, however, and additional data are needed to assess the generality and diversity of the molecular mechanisms that regulate the biology of migration. We sequenced CLOCK and ADCYAP1 in 15 populations across the two species of the avian genus Junco, a North American lineage in which multiple recently diverged subspecies and populations range from sedentary to long-distance migrants. We found no consistent associations between allele length and migratory status across the genus for either CLOCK or ADCYAP1. However, within two subspecies groups, populations that migrate longer distances have longer CLOCK alleles on average. Additionally, there was a positive relationship between ADCYAP1 allele length and migratory restlessness (zugunruhe) among individuals within one of two captive populations studied—a result similar to those reported previously within captive blackcaps ( Sylvia atricapilla). We conclude that, while both ADCYAP1 and CLOCK may correlate with migratory propensity within or among certain populations or species, previously identified relationships between migratory behavior and sequence variants cannot be easily generalized across taxa.
doi:10.12688/f1000research.2-115.v1
PMCID: PMC3907158  PMID: 24627781
10.  Testosterone Affects Neural Gene Expression Differently in Male and Female Juncos: A Role for Hormones in Mediating Sexual Dimorphism and Conflict 
PLoS ONE  2013;8(4):e61784.
Despite sharing much of their genomes, males and females are often highly dimorphic, reflecting at least in part the resolution of sexual conflict in response to sexually antagonistic selection. Sexual dimorphism arises owing to sex differences in gene expression, and steroid hormones are often invoked as a proximate cause of sexual dimorphism. Experimental elevation of androgens can modify behavior, physiology, and gene expression, but knowledge of the role of hormones remains incomplete, including how the sexes differ in gene expression in response to hormones. We addressed these questions in a bird species with a long history of behavioral endocrinological and ecological study, the dark-eyed junco (Junco hyemalis), using a custom microarray. Focusing on two brain regions involved in sexually dimorphic behavior and regulation of hormone secretion, we identified 651 genes that differed in expression by sex in medial amygdala and 611 in hypothalamus. Additionally, we treated individuals of each sex with testosterone implants and identified many genes that may be related to previously identified phenotypic effects of testosterone treatment. Some of these genes relate to previously identified effects of testosterone-treatment and suggest that the multiple effects of testosterone may be mediated by modifying the expression of a small number of genes. Notably, testosterone-treatment tended to alter expression of different genes in each sex: only 4 of the 527 genes identified as significant in one sex or the other were significantly differentially expressed in both sexes. Hormonally regulated gene expression is a key mechanism underlying sexual dimorphism, and our study identifies specific genes that may mediate some of these processes.
doi:10.1371/journal.pone.0061784
PMCID: PMC3627916  PMID: 23613935
11.  Maintenance of MHC Class IIB diversity in a recently established songbird population 
Journal of avian biology  2012;43(2):109-118.
We examined variation at MHC Class IIB genes in a recently established population of dark-eyed juncos (Junco hyemalis) in a coastal urban environment in southern California, USA relative to an ancestral-range population from a nearby species-typical montane environment. The founding population is estimated to have been quite small, but we predicted that variation at the major histocompatibility complex (MHC) among the founders would nevertheless be preserved owing to the high functional significance of MHC. Previous studies of MHC in songbirds have had varying degrees of success in isolating loci, as passerines show extensive MHC gene duplication. In order to compare diversity in the two populations, we employed two published approaches to sequencing MHC Class II exon 2: direct sequencing with exon-based primers, and traditional cloning and sequencing with intron-based primers. Results from both methods show that the colonist population has maintained high levels of variation. Our results also indicate varying numbers of alleles across individuals, corroborating evidence for gene duplication in songbird MHC. While future studies in songbirds may need to take a genomic approach to fully understand the structure of MHC in this lineage, our results show that it is possible to use traditional methods to reveal functional variation across populations.
doi:10.1111/j.1600-048X.2012.05504.x
PMCID: PMC3368239  PMID: 22685370
MHC; birds; passerines; colonization
12.  Promiscuous mating produces offspring with higher lifetime fitness 
In many species, each female pairs with a single male for the purpose of rearing offspring, but may also engage in extra-pair copulations. Despite the prevalence of such promiscuity, whether and how multiple mating benefits females remains an open question. Multiple mating is typically thought to be favoured primarily through indirect benefits (i.e. heritable effects on the fitness of offspring). This prediction has been repeatedly tested in a variety of species, but the evidence has been equivocal, perhaps because such studies have focused on pre-reproductive survival rather than lifetime fitness of offspring. Here, we show that in a songbird, the dark-eyed junco (Junco hyemalis), both male and female offspring produced by extra-pair fertilizations have higher lifetime reproductive success than do offspring sired within the social pair. Furthermore, adult male offspring sired via extra-pair matings are more likely to sire extra-pair offspring (EPO) themselves, suggesting that fitness benefits to males accrue primarily through enhanced mating success. By contrast, female EPO benefited primarily through enhanced fecundity. Our results provide strong support for the hypothesis that the evolution of extra-pair mating by females is favoured by indirect benefits and shows that such benefits accrue much later in the offspring's life than previously documented.
doi:10.1098/rspb.2011.1547
PMCID: PMC3259935  PMID: 21881136
extra-pair mating; multiple mating; lifetime reproductive success; indirect fitness benefits; sexual selection
13.  Competitive females are successful females; phenotype, mechanism and selection in a common songbird 
In a variety of taxa, male reproductive success is positively related to expression of costly traits such as large body size, ornaments, armaments, and aggression. These traits are thought to improve male competitive ability, and thus access to limited reproductive resources. Females of many species also express competitive traits. However, we know very little about the consequences of individual variation in competitive traits and the mechanisms that regulate their expression in females. Consequently, it is currently unclear whether females express competitive traits owing to direct selection or as an indirect result of selection on males. Here we examine females of a mildly dimorphic songbird (Junco hyemalis) to determine whether females, show positive covariance in traits (morphology and behavior) that may be important in a competition. We also examine whether trait expression relates either to testosterone (T) in terms of mechanism or to reproductive success in terms of function. We found that larger females were more aggressive and that greater ability to produce T in response to a physiological challenge consisting of a standardized injection of gonadotropin releasing hormone (GnRH) predicted some measures of female body size and aggression. Finally, we found that aggressive females had greater reproductive success. We conclude that testosterone may influence female phenotype and that females may benefit from expressing a competitive phenotype. We also suggest that the mild dimorphism observed in many species may be due in part to direct selection on females rather than simply a correlated response to selection in males.
doi:10.1007/s00265-011-1272-5
PMCID: PMC3278083  PMID: 22345899
competitive phenotype; female aggression; testosterone; Gonadotropin releasing hormone; Junco hyemalis; sexual dimorphism
14.  De novo transcriptome sequencing in a songbird, the dark-eyed junco (Junco hyemalis): genomic tools for an ecological model system 
BMC Genomics  2012;13:305.
Background
Though genomic-level data are becoming widely available, many of the metazoan species sequenced are laboratory systems whose natural history is not well documented. In contrast, the wide array of species with very well-characterized natural history have, until recently, lacked genomics tools. It is now possible to address significant evolutionary genomics questions by applying high-throughput sequencing to discover the majority of genes for ecologically tractable species, and by subsequently developing microarray platforms from which to investigate gene regulatory networks that function in natural systems. We used GS-FLX Titanium Sequencing (Roche/454-Sequencing) of two normalized libraries of pooled RNA samples to characterize a transcriptome of the dark-eyed junco (Junco hyemalis), a North American sparrow that is a classically studied species in the fields of photoperiodism, speciation, and hormone-mediated behavior.
Results
From a broad pool of RNA sampled from tissues throughout the body of a male and a female junco, we sequenced a total of 434 million nucleotides from 1.17 million reads that were assembled de novo into 31,379 putative transcripts representing 22,765 gene sets covering 35.8 million nucleotides with 12-fold average depth of coverage. Annotation of roughly half of the putative genes was accomplished using sequence similarity, and expression was confirmed for the majority with a preliminary microarray analysis. Of 716 core bilaterian genes, 646 (90 %) were recovered within our characterized gene set. Gene Ontology, orthoDB orthology groups, and KEGG Pathway annotation provide further functional information about the sequences, and 25,781 potential SNPs were identified.
Conclusions
The extensive sequence information returned by this effort adds to the growing store of genomic data on diverse species. The extent of coverage and annotation achieved and confirmation of expression, show that transcriptome sequencing provides useful information for ecological model systems that have historically lacked genomic tools. The junco-specific microarray developed here is allowing investigations of gene expression responses to environmental and hormonal manipulations – extending the historic work on natural history and hormone-mediated phenotypes in this system.
doi:10.1186/1471-2164-13-305
PMCID: PMC3476391  PMID: 22776250
Transcriptome; Aves; pyrosequencing; microarray; Junco; 454 titanium cDNA sequencing; single nucleotide polymorphism.
15.  Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations 
Behavioral Ecology  2010;21(3):608-614.
Chemical signaling has been documented in many animals, but its potential importance in avian species, particularly songbirds, has received far less attention. We tested whether volatile compounds in the preen oil of a songbird (Junco hyemalis) contain reliable information about individual identity, sex, or population of origin by repeated sampling from captive male and female juncos originating from 2 recently diverged junco populations in southern California. One of the populations recently colonized an urban environment; the other resides in a species-typical montane environment. The birds were field-caught as juveniles, housed under identical conditions, and fed the same diet for 10 months prior to sampling. We used capillary gas chromatography–mass spectrometry to quantify the relative abundance of 19 volatile compounds previously shown to vary seasonally in this species. We found individual repeatability as well as significant sex and population differences in volatile profiles. The persistence of population differences in a common environment suggests that preen oil chemistry likely has a genetic basis and may thus evolve rapidly in response to environmental change. These finding suggest that songbird preen oil odors have the potential to function as chemosignals associated with mate recognition or reproductive isolation.
doi:10.1093/beheco/arq033
PMCID: PMC2854530  PMID: 22475692
birds; chemical communication; Junco hyemalis; olfaction; pheromones
16.  Phenotypic integration and independence: Hormones, performance, and response to environmental change 
Hormones coordinate the co-expression of behavioral, physiological, and morphological traits, giving rise to correlations among traits and organisms whose parts work well together. This article considers the implications of these hormonal correlations with respect to the evolution of hormone-mediated traits. Such traits can evolve owing to changes in hormone secretion, hormonal affinity for carrier proteins, rates of degradation and conversion, and interaction with target tissues to name a few. Critically, however, we know very little about whether these changes occur independently or in tandem, and thus whether hormones promote the evolution of tight phenotypic integration or readily allow the parts of the phenotype to evolve independently. For example, when selection favors a change in expression of hormonally mediated characters, is that alteration likely to come about through changes in hormone secretion (signal strength), changes in response to a fixed level of secretion (sensitivity of target tissues), or both? At one extreme, if the phenotype is tightly integrated and only the signal responds via selection's action on one or more hormonally mediated traits, adaptive modification may be constrained by past selection for phenotypic integration. Alternatively, response to selection may be facilitated if multivariate selection favors new combinations that can be easily achieved by a change in signal strength. On the other hand, if individual target tissues readily “unplug” from a hormone signal in response to selection, then the phenotype may be seen as a loose confederation that responds on a trait-by-trait basis, easily allowing adaptive modification, although perhaps more slowly than if signal variation were the primary mode of evolutionary response. Studies reviewed here and questions for future research address the relative importance of integration and independence by comparing sexes, individuals, and populations. Most attention is devoted to the hormone testosterone (T) and a songbird species, the dark-eyed junco (Junco hyemalis).
doi:10.1093/icb/icp057
PMCID: PMC4012227  PMID: 21665827
17.  Partner Status Influences Women’s Interest in the Opposite Sex 
Human nature (Hawthorne, N.Y.)  2009;20(1):93-104.
Previous research has demonstrated that hormones, relationship goals, and social context influence interest in the opposite sex. It has not been previously reported, however, whether having a current sexual partner also influences interest in members of the opposite sex. To test this, we obtained explicit and implicit measures of interest by measuring men’s and women’s subjective ratings and response times while they evaluated photos of opposite-sex faces. Fifty-nine men and 56 women rated 510 photos of opposite-sex faces for realism, masculinity, attractiveness, or affect. We found that these subjective ratings were not influenced by partner status in either men or women. However, women who did not report having a current sexual partner spent more time evaluating the photos than women who did have partners, demonstrating greater interest in the photos. Sexual partner status did not predict men’s response times. These findings may reveal that relationship commitment in women suppresses interest in alternative partners.
doi:10.1007/s12110-009-9056-6
PMCID: PMC2743495  PMID: 20161078
Sex differences; Response time; Viewing time; Mate choice; Face processing
18.  The Role of the Anterior Cingulate Cortex in Women’s Sexual Decision Making 
Neuroscience letters  2008;449(1):42-47.
Women’s sexual decision making is a complex process balancing the potential rewards of conception and pleasure against the risks of possible low paternal care or sexually transmitted infection. Although neural processes underlying social decision making are suggested to overlap with those involved in economic decision making, the neural systems associated with women’s sexual decision making are unknown. Using fMRI, we measured the brain activation of 12 women while they viewed photos of men’s faces. Face stimuli were accompanied by information regarding each man’s potential risk as a sexual partner, indicated by a written description of the man’s number of previous sexual partners and frequency of condom use. Participants were asked to evaluate how likely they would be to have sex with the man depicted. Women reported that they would be more likely to have sex with low compared to high risk men. Stimuli depicting low risk men also elicited stronger activation in the anterior cingulate cortex (ACC), midbrain, and intraparietal sulcus, possibly reflecting an influence of sexual risk on women’s attraction, arousal, and attention during their sexual decision making. Activation in the ACC was positively correlated with women’s subjective evaluations of sex likelihood and response times during their evaluations of high, but not low, risk men. These findings provide evidence that neural systems involved in sexual decision making in women overlap with those described previously to underlie nonsexual decision making.
doi:10.1016/j.neulet.2008.10.083
PMCID: PMC2614659  PMID: 18992789
mate choice; decision making; anterior cingulated; risk
19.  Neural Activation in Women in Response to Masculinized Male Faces: Mediation by Hormones and Psychosexual Factors 
Women’s preference for masculine faces varies with hormonal state, sociosexuality, and relationship status, but the underlying mechanisms are poorly understood. We hypothesized that hormones and psychosexual factors (sociosexuality, sexual inhibition/excitation) mediate the perception and evaluation of male faces thereby influencing women’s preferences. We used fMRI to measure brain activity in twelve women as they evaluated pictures of male faces (half 30% masculinized, half 30% feminized). Participants were heterosexual women, age 23–28, who were not in a committed relationship and not using hormonal contraception. Women were tested during both the follicular and luteal phase of their menstrual cycle. We found five brain regions related to face and risk processing that responded more to the masculinized than to the feminized faces, including the superior temporal gyrus, precentral gyrus, posterior cingulate cortex, inferior parietal lobule, and anterior cingulate cortex. Increased activation in the anterior cingulate cortex, specifically, may indicate that women perceive masculinized faces to be both more risky and more attractive. We did not see any areas that were more strongly activated by feminized faces. Levels of activation were influenced by hormonal and psychosexual factors. The patterns of hormonally and psychosexually mediated neural activation observed may offer insight into the cognitive processes underlying women’s partner preferences.
doi:10.1016/j.evolhumbehav.2008.08.006
PMCID: PMC2614289  PMID: 20046209
20.  Neural activation in the orbitofrontal cortex in response to male faces increases during the follicular phase 
Hormones and behavior  2009;56(1):66-72.
Women’s sexual interest changes with hormonal fluctuations across the menstrual cycle. It is unclear how hormones modify women’s sexual behavior and desire, but one possibility is that they alter women’s positive appraisals of stimuli and thus their sexual interest. Using 3 T fMRI, we measured neural activation in women at two time points in their menstrual cycle (late follicular, luteal) while they evaluated photos of men presented as potential sexual partners. Participants were ten heterosexual women aged 23–28 none of who was using hormonal contraceptives or in a committed relationship. In an event-related design, the women were presented with as series of photos of male faces and asked questions to assess their degree of sexual interest in the men depicted. Results demonstrate an overall effect of menstrual cycle phase on neural activation. During their follicular versus luteal phase, women demonstrated increased activation in the right medial orbitofrontal cortex (OFC), suggesting increased positive appraisal. Activation in the OFC was positively correlated with women’s estradiol to progesterone ratios. There were no areas that demonstrated increased activation during the luteal versus follicular phase. The observed increase in activation in the OFC during the follicular phase may reflect a hormonally mediated increase in appetitive motivation and may prime women towards increased sexual interest and behavior around ovulation.
doi:10.1016/j.yhbeh.2009.03.005
PMCID: PMC2742477  PMID: 19306881
Menstrual cycle; Hormones; Orbitofrontal cortex; Sexual behavior
21.  Suppression of Kisspeptin Expression and Gonadotropic Axis Sensitivity Following Exposure to Inhibitory Day Lengths in Female Siberian Hamsters 
Hormones and behavior  2007;52(4):492-498.
To avoid breeding during unsuitable environmental or physiological circumstances, the reproductive axis adjusts its output in response to fluctuating internal and external conditions. The ability of the reproductive system to alter its activity appropriately in response to these cues has been well established. However, the means by which reproductively relevant cues are interpreted, integrated, and relayed to the reproductive axis remain less well specified. The neuropeptide kisspeptin has been shown to be a potent positive stimulator of the hypothalamo-pituitary-gonadal (HPG) axis, suggesting a possible neural locus for the interpretation/integration of these cues. Because a failure to inhibit reproduction during winter would be maladaptive for short-lived female rodents, female Siberian hamsters (Phodopus sungorus) housed in long and short days hamsters were examined. In long, ‘summer’ photoperiods, kisspeptin is highly expressed in the anteroventral periventricular nucleus (AVPV), with low expression in the arcuate nucleus (Arc). A striking reversal in this pattern is observed in animals held in short, ‘winter’ photoperiods, with negligible kisspeptin expression in the AVPV and marked staining in the Arc. Although all studies to date suggest that both populations act to stimulate the reproductive axis, these contrasting expression patterns of AVPV and Arc kisspeptin suggest disparate roles for these two cell populations. Additionally, we found that the stimulatory actions of exogenous kisspeptin are blocked by acyline, a gonadotropin-releasing hormone (GnRH) receptor antagonist, suggesting an action of kisspeptin on the GnRH system rather than pituitary gonadotropes. Finally, females held in short day lengths exhibit a reduced response to exogenous kisspeptin treatment relative to long-day animals. Together, these findings indicate a role for kisspeptin in the AVPV and Arc as an upstream integration center for reproductively-relevant stimuli and point to a dual mechanism of reproductive inhibition in which kisspeptin expression is reduced concomitant with reduced sensitivity of the HPG axis to this peptide.
doi:10.1016/j.yhbeh.2007.07.004
PMCID: PMC2717891  PMID: 17706968
metastin; GPR54; photoperiod; Siberian hamster; seasonal; reproduction
22.  Hormone-mediated suites as adaptations and evolutionary constraints 
Hormones mediate the expression of suites of correlated traits and hence may act both to facilitate and constrain adaptive evolution. Selection on one trait within a hormone-mediated suite may, for example, lead to a change in the strength of the hormone signal, causing either beneficial or detrimental changes in correlated traits. Theory and empirical methods for studying correlated trait evolution have been developed by the field of evolutionary quantitative genetics, and here we suggest that their application to the study of hormone-mediated suites may prove fruitful. We present hypotheses for how selection shapes the evolution of hormone-mediated suites and argue that correlational selection, which arises when traits interact in their effects on fitness, may act to alter or conserve the composition of hormone-mediated suites. Next, we advocate using quantitative genetic methods to assess natural covariation among hormone-mediated traits and to measure the strength of natural selection acting on them. Finally, we present illustrative examples from our own work on the evolution of testosterone-mediated suites in male and female dark-eyed juncos. We conclude that future work on hormone-mediated suites, if motivated by quantitative genetic theory, may provide important insights into their dual roles as adaptations and evolutionary constraints.
doi:10.1098/rstb.2007.0002
PMCID: PMC2606720  PMID: 18048296
hormones; testosterone; adaptation; constraint; correlational selection; phenotypic integration
23.  Sex differences in the response to environmental cues regulating seasonal reproduction in birds 
Although it is axiomatic that males and females differ in relation to many aspects of reproduction related to physiology, morphology and behaviour, relatively little is known about possible sex differences in the response to cues from the environment that control the timing of seasonal breeding. This review concerns the environmental regulation of seasonal reproduction in birds and how this process might differ between males and females. From an evolutionary perspective, the sexes can be expected to differ in the cues they use to time reproduction. Female reproductive fitness typically varies more as a function of fecundity selection, while male reproductive fitness varies more as a function sexual selection. Consequently, variation in the precision of the timing of egg laying is likely to have more serious fitness consequences for females than for males, while variation in the timing of recrudescence of the male testes and accompanying territory establishment and courtship are likely to have more serious fitness consequences for males. From the proximate perspective, sex differences in the control of reproduction could be regulated via the response to photoperiod or in the relative importance and action of supplementary factors (such as temperature, food supply, nesting sites and behavioural interactions) that adjust the timing of reproduction so that it is in step with local conditions. For example, there is clear evidence in several temperate zone avian species that females require both supplementary factors and long photoperiods in order for follicles to develop, while males can attain full gonadal size based on photoperiodic stimulation alone. The neuroendocrine basis of these sex differences is not well understood, though there are many candidate mechanisms in the brain as well as throughout the entire hypothalamo–pituitary–gonadal axis that might be important.
doi:10.1098/rstb.2007.2137
PMCID: PMC2606748  PMID: 17638693
photoperiodism; circannual rhythms; sex differences; supplementary cues
24.  Older parents are less responsive to a stressor in a long-lived seabird: a mechanism for increased reproductive performance with age? 
In many taxa, reproductive performance increases throughout the lifespan and this may occur in part because older adults invest more in reproduction. The mechanisms that facilitate an increase in reproductive performance with age, however, are poorly understood. In response to stressors, vertebrates release glucocorticoids, which enhance survival but concurrently shift investment away from reproduction. Consequently, when the value of current reproduction is high relative to the value of future reproduction and survival, as it is in older adults, life history theory predicts that the stress response should be suppressed. In this study, we tested the hypothesis that older parents would respond less strongly to a stressor in a natural, breeding population of common terns (Sterna hirundo). Common terns are long-lived seabirds and reproductive performance is known to increase throughout the lifespan of this species. As predicted, the maximum level of glucocorticoids released in response to handling stress decreased significantly with age. We suggest that suppression of the stress response may be an important physiological mechanism that facilitates an increase in reproductive performance with age.
doi:10.1098/rspb.2006.3557
PMCID: PMC1635515  PMID: 16901843
age; common tern (Sterna hirundo); corticosterone; life history evolution; parental care; stress response
25.  Elevated testosterone reduces choosiness in female dark-eyed juncos (Junco hyemalis): evidence for a hormonal constraint on sexual selection? 
Because testosterone (T) often mediates the expression of attractive displays and ornaments, in the absence of constraints sexual selection should lead to an evolutionary increase in male T levels. One candidate constraint would be a genetic correlation between the sexes that leads to a correlated response in females. If increased T in females were to have deleterious effects on mate choice, the effect of sexual selection on male T would be weakened. Using female dark-eyed juncos (Junco hyemalis), we tested whether experimentally enhancing female T would lead to a decrease in discrimination between two classes of males, one treated with T (T-males) and one control (C-males). The two female treatments (T-implanted and C-females) spent equal amounts of time with both classes of males, but T-treated females failed to show a preference for either male treatment, whereas C-females showed a significant preference, albeit in an unexpected direction (for C-males). T-females were less discriminating than C-females, irrespective of the direction of their preference. To our knowledge, this is the first study to show that circulating hormones can alter female choosiness without reducing sexual motivation. Our results suggest that hormonal correlations between the sexes have the potential to constrain sexual selection on males.
doi:10.1098/rspb.2004.2741
PMCID: PMC1691732  PMID: 15306336

Results 1-25 (26)