PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Assessment during aggressive contests between male jumping spiders 
Animal behaviour  2008;76(3):901-910.
Assessment strategies are an important component in game theoretical models of contests. Strategies can be either based on one’s own abilities (self assessment) or on the relative abilities of two opponents (mutual assessment). Using statistical methodology that allows discrimination between assessment types, we examined contests in the jumping spider Phiddipus clarus. In this species, aggressive interactions can be divided into ‘pre-contact’ and ‘contact’ phases. Pre-contact phases consist of bouts of visual and vibratory signaling. Contact phases follow where males physically contact each other (leg fencing). Both weight and vibratory signaling differences predicted winners with heavier and more actively signaling males winning more contests. Vibratory behaviour predicted pre-contact phase duration, with higher signaling rates and larger differences between contestants leading to longer pre-contact interaction times. Contact phase duration was predicted most strongly by the weight of losing males relative to that of winning males, suggesting that P. clarus males use self-assessment in determining contest duration. While a self-assessment strategy was supported, our data suggest a secondary role for mutual assessment (“partial mutual assessment”). After initial contest bouts, male competitors changed their behaviour. Pre-contact and contact phase durations were reduced while vibratory signaling behaviour in winners was unchanged. In addition, only vibratory signaling differences predicted winners in subsequent bouts suggesting a role of experience in determining contest outcomes. We suggest that the rules and assessment strategies males use can change depending on experience and that assessment strategies are likely a continuum between self- and mutual assessment.
doi:10.1016/j.anbehav.2008.01.032
PMCID: PMC2598435  PMID: 19727331
2.  The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin 
PLoS ONE  2012;7(2):e31203.
Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin.
doi:10.1371/journal.pone.0031203
PMCID: PMC3278420  PMID: 22348055
3.  Multi-Modal Courtship in the Peacock Spider, Maratus volans (O.P.-Cambridge, 1874) 
PLoS ONE  2011;6(9):e25390.
The peacock spider, Maratus volans, has one of the most elaborate courtship displays in arthropods. Using regular and high-speed video segments captured in the lab, we provide detailed descriptions of complete male courtship dances. As research on jumping spiders has demonstrated that males of some species produce vibrations concurrently with visual displays, we also used laser vibrometry to uncover such elements for this species. Our recordings reveal and describe for the first time, that M. volans males use vibratory signals in addition to complex body ornaments and motion displays. The peacock spider and other closely related species are outstanding study organisms for testing hypotheses about the evolution and functional significance of complex displays, thus, this descriptive study establishes a new model system for behavioral ecology, one that certainly stands to make important contributions to the field.
doi:10.1371/journal.pone.0025390
PMCID: PMC3181266  PMID: 21980440
4.  Resonating feathers produce courtship song 
Male Club-winged Manakins, Machaeropterus deliciosus (Aves: Pipridae), produce a sustained tonal sound with specialized wing feathers. The fundamental frequency of the sound produced in nature is approximately 1500 Hz and is hypothesized to result from excitation of resonance in the feathers' hypertrophied shafts. We used laser Doppler vibrometry to determine the resonant properties of male Club-winged Manakin's wing feathers, as well as those of two unspecialized manakin species. The modified wing feathers exhibit a response peak near 1500 Hz, and unusually high Q-values (a measure of resonant tuning) for biological objects (Q up to 27). The unmodified wing feathers of the Club-winged Manakin do not exhibit strong resonant properties when measured in isolation. However, when measured still attached to the modified feathers (nine feathers held adjacent by an intact ligament), they resonate together as a unit near 1500 Hz, and the wing produces a second harmonic of similar or greater amplitude than the fundamental. The feathers of the control species also exhibit resonant peaks around 1500 Hz, but these are significantly weaker, the wing does not resonate as a unit and no harmonics are produced. These results lend critical support to the resonant stridulation hypothesis of sound production in M. deliciosus.
doi:10.1098/rspb.2009.1576
PMCID: PMC2842718  PMID: 19906670
feather; resonance; sonation; laser vibrometry; sexual selection; morphological novelty
5.  Examination of prior contest experience and the retention of winner and loser effects 
Behavioral Ecology  2010;21(2):404-409.
In many animal taxa, prior contest experience affects future performance such that winning increases the chances of winning in the future (winner effect) and losing increases the chances of losing in the future (loser effect). It is, however, not clear whether this pattern typically arises from experience effects on actual or perceived fighting ability (or both). In this study, we looked at winner and loser effects in the jumping spider Phidippus clarus. We assigned winning or losing experience to spiders and tested them against opponents of similar fighting ability in subsequent contests at 1-, 2-, 5-, and 24-h intervals. We examined the strength of winner and loser effects, how long effects persist, as well as how experience affected perceived and actual fighting ability. Our results demonstrate that winner and loser effects are of approximately the same magnitude, although loser effects last longer than winner effects. Our results also demonstrate that previous experience alters actual fighting ability because both the assessment and escalation periods were affected by experience. We suggest that the retention time of experience effects depends on expected encounter rates as well as other behavioral and ecological factors. In systems with short breeding seasons and/or rapidly fluctuating populations, context-dependent retention of experience effects may allow males to track their status relative to the fluctuating fighting ability of local competitors without paying the costs necessary to recall or assess individual competitors.
doi:10.1093/beheco/arp204
PMCID: PMC2821427  PMID: 22476369
contest experience; fighting ability; male–male competition; perceived RHP; Phidippus clarus; winner and loser effect
6.  Experience affects the outcome of agonistic contests without affecting the selective advantage of size 
Animal behaviour  2009;77(6):1533-1538.
In the field, phenotypic determinants of competitive success are not always absolute. For example, contest experience may alter future competitive performance. As future contests are not determined solely on phenotypic attributes, prior experience could also potentially alter phenotype–fitness associations. In this study, we examined the influence of single and multiple experiences on contest outcomes in the jumping spider Phidippus clarus. We also examined whether phenotype–fitness associations altered as individuals gained more experience. Using both size-matched contests and a tournament design, we found that both winning and losing experience affected future contest success; males with prior winning experience were more likely to win subsequent contests. Although experience was a significant determinant of success in future contests, male weight was approximately 1.3 times more important than experience in predicting contest outcomes. Despite the importance of experience in determining contest outcomes, patterns of selection did not change between rounds. Overall, our results show that experience can be an important determinant in contest outcomes, even in short-lived invertebrates, and that experience alone is unlikely to alter phenotype–fitness associations.
doi:10.1016/j.anbehav.2009.02.026
PMCID: PMC2699276  PMID: 20161296
jumping spider; multiple competition; Phidippus clarus; previous experience; selection gradient; tournament design

Results 1-6 (6)