Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Genetic polymorphism at an odorant receptor gene (Or39) among mosquitoes of the Anopheles gambiae complex in Senegal (West Africa) 
BMC Research Notes  2014;7:321.
Olfaction plays a significant role in insect behavior during critical steps of their life-cycle, such as host-seeking during foraging or the search for a mate. Here, we explored genetic polymorphism within and divergence between sibling species of the African malaria mosquito, Anopheles gambiae sensu lato in the gene sequence and encoded peptides of an odorant receptor, Or39. This study included sympatric specimens of An. gambiae sensu stricto, An. coluzzii and An. arabiensis sampled together in the village of Dielmo, Senegal.
A 1,601 bp genomic sequence composed of 6 exons and 5 introns was obtained for Or39 from 6–8 mosquitoes in each of the 3 species. DNA sequence analysis revealed a high level of molecular polymorphism (π = 0.0154; Haplotype diversity = 0.867) and high overall genetic differentiation between taxa (Fst > 0.92, P < 0.01). In total, 50 parsimony informative sites were recorded. Throughout the whole dataset, there were 13 non-synonymous mutations resulting in aminoacid changes in the encoded protein. Each of the 6 different identified peptides was species-specific and none was shared across species. Most aminoacid changes were located on the intracellular domains of the protein. However, intraspecific polymorphisms in An. gambiae and An. arabiensis as well as species-specific mutations also occurred in the first extracellular domain.
Although obtained from a limited number of specimens, our results point towards genetic differences between cryptic species within the An. gambiae complex in a gene of biological relevance that might be of evolutionary significance when exposed to disruptive selective forces.
PMCID: PMC4048261  PMID: 24886539
Mosquito; Malaria; Anopheles gambiae; Speciation; Olfactory receptor
2.  A behavioral mechanism underlying ecological divergence in the malaria mosquito Anopheles gambiae 
Behavioral Ecology  2010;21(5):1087-1092.
Disruptive selection mediated by predation on aquatic immature stages has been proposed as a major force driving ecological divergence and fostering speciation between the M and S molecular forms of the African malaria mosquito, Anopheles gambiae. In the dry savannahs of West Africa where both molecular forms co-occur, the S form thrives in temporary pools filled with rainwater, whereas the M form preferentially breeds in permanent freshwater habitats where predator pressure is higher. Here, we explored the proximal mechanisms by which predation may contribute to habitat segregation between molecular forms using progeny of female mosquitoes captured in Burkina Faso. We show that the S form suffers higher predation rates than the M form when simultaneously exposed to the widespread predator, Anisops jaczewskii in an experimental arena. Furthermore, behavioral plasticity induced by exposure to the predator was observed in the M form, but not in the S form, and may partially explain its habitat use and ecological divergence from the S form. We discuss the role of adaptive phenotypic plasticity in allowing successful colonization of a new ecological niche by the M form and highlight further research areas that need to be addressed for a better understanding of the ultimate mechanisms underlying ecological speciation in this pest of major medical importance.
PMCID: PMC2920295  PMID: 22476108
adaptation; Anopheles gambiae; behavior; habitat divergence; mosquito; notonectidae; phenotypic plasticity, predation; speciation
3.  Structure and Dynamics of Male Swarms of Anopheles gambiae 
Journal of medical entomology  2009;46(2):227-235.
Mosquito swarms are poorly understood mating aggregations. In the malaria vector Anopheles gambiae Giles, they are known to depend on environmental conditions, such as the presence of a marker on the ground, and they may be highly relevant to reproductive isolation. We present quantitative measurements of individual An. gambiae positions within swarms from Donéguébougou, Mali, estimated by stereoscopic video image analysis. Results indicate that swarms in this species are approximately spherical, with an unexpectedly high density of individuals close to the swarm centroid. This high density may be the result of individual males maximizing their probability of encountering a female or a product of mosquito orientation through cues within the swarm. Our analysis also suggests a difference in swarm organization between putative incipient species of An. gambiae with increasing numbers of males. This may be related to a difference in marker use between these groups, supporting the hypothesis that swarming behavior is a mechanism of mate recognition and ultimately reproductive isolation.
PMCID: PMC2680012  PMID: 19351073
Anopheles gambiae; swarm; mate recognition; three-dimensional localization; stereoscopic image analysis
4.  The molecular forms of Anopheles gambiae: A phenotypic perspective 
The African malaria mosquito Anopheles gambiae is undergoing speciation, being split into the M and S molecular forms. Speciation is the main process promoting biological diversity, thus, new vector species might complicate disease transmission. Genetic differentiation between the molecular forms has been extensively studied, but phenotypic differences between them, the evolutionary forces that generated divergence, and the mechanisms that maintain their genetic isolation have only recently been addressed. Here, we review recent studies suggesting that selection mediated by larval predation and competition promoted divergence between temporary and permanent freshwater habitats. These differences explain the sharp discontinuity in distribution of the molecular forms between rice fields and surrounding savanna, but they can also explain the concurrent cline between humid and arid environments due to the dependence on permanent habitats in the latter. Although less pronounced, differences in adult body size, reproductive output, and longevity also suggest that the molecular forms have adapted to distinct niches. Reproductive isolation between the molecular forms is achieved by spatial swarm segregation, although within-swarm mate recognition appears to play a role in certain locations. The implications of these results to disease transmission and control are discussed and many of the gaps in our understanding are highlighted.
PMCID: PMC2731232  PMID: 18640289

Results 1-4 (4)