Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Genomic, Proteomic, Morphological, and Phylogenetic Analyses of vB_EcoP_SU10, a Podoviridae Phage with C3 Morphology 
PLoS ONE  2014;9(12):e116294.
A recently isolated phage, vB_EcoP_SU10 (SU10), with the unusual elongated C3 morphotype, can infect a wide range of Escherichia coli strains. We have sequenced the genome of this phage and characterized it further by mass spectrometry based proteomics, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and ultra-thin section electron microscopy. The genome size is 77,327 base pairs and its genes, and genome architecture, show high similarity to the phiEco32 phage genes and genome. The TEM images reveal that SU10 have a quite long tail for being a Podoviridae phage, and that the tail also changes conformation upon infection. The ultra-thin section electron microscopy images of phages at the stage of replication within the host cell show that the phages form a honeycomb-like structure under packaging of genomes and assembly of mature capsids. This implies a tight link between the replication and cutting of the concatemeric genome, genome packaging, and capsid assembly. We have also performed a phylogenetic analysis of the structural genes common between Podoviridae phages of the C1 and C3 morphotypes. The result shows that the structural genes have coevolved, and that they form two distinct groups linked to their morphotypes. The structural genes of C1 and C3 phages appear to have diverged around 280 million years ago applying a molecular clock calibrated according to the presumed split between the Escherichia – Salmonella genera.
PMCID: PMC4281155  PMID: 25551446
2.  Severe complications with irreversible electroporation of the pancreas in the presence of a metallic stent: a warning of a procedure that never should be performed 
Acta Radiologica Short Reports  2014;3(11):2047981614556409.
Irreversible electroporation (IRE) is an ablation technique that is being investigated as a potential treatment of pancreatic cancer. However, many of these patients have a metallic stent in the bile duct, which is recognized as a contraindication for IRE ablation. We report a case in which an IRE ablation in the region of the pancreatic head was performed on a patient with a metallic stent which led to severe complications. After the treatment, the patient suffered from several complications including perforation of the duodenum and transverse colon, and bleeding from a branch of the superior mesenteric artery which eventually lead to her death. Therefore, we believe it is important to be aware of this if an IRE ablation close to a metallic stent is considered.
PMCID: PMC4271709  PMID: 25535573
IRE; irreversible electroporation; pancreatic cancer; metallic stent; bowel perforation; bleeding; artery injury
3.  Phage therapy—constraints and possibilities 
Upsala Journal of Medical Sciences  2014;119(2):192-198.
The rise of antibiotic-resistant bacterial strains, causing intractable infections, has resulted in an increased interest in phage therapy. Phage therapy preceded antibiotic treatment against bacterial infections and involves the use of bacteriophages, bacterial viruses, to fight bacteria. Virulent phages are abundant and have proven to be very effective in vitro, where they in most cases lyse any bacteria within the hour. Clinical trials on animals and humans show promising results but also that the treatments are not completely effective. This is partly due to the studies being carried out with few phages, and with limited experimental groups, but also the fact that phage therapy has limitations in vivo. Phages are large compared with small antibiotic molecules, and each phage can only infect one or a few bacterial strains. A very large number of different phages are needed to treat infections as these are caused by genetically different strains of bacteria. Phages are effective only if enough of them can reach the bacteria and increase in number in situ. Taken together, this entails high demands on resources for the construction of phage libraries and the testing of individual phages. The effectiveness and host range must be characterized, and immunological risks must be assessed for every single phage.
PMCID: PMC4034558  PMID: 24678769
Antibiotic resistance; bacteriophage; phage; phage therapy
4.  Redundancy among phospholipase D isoforms in resistance triggered by recognition of the Pseudomonas syringae effector AvrRpm1 in Arabidopsis thaliana 
Plants possess a highly sophisticated system for defense against microorganisms. So called MAMP (microbe-associated molecular patterns) triggered immunity (MTI) prevents the majority of non-adapted pathogens from causing disease. Adapted plant pathogens use secreted effector proteins to interfere with such signaling. Recognition of microbial effectors or their activity by plant resistance (R)-proteins triggers a second line of defense resulting in effector triggered immunity (ETI). The latter usually comprises the hypersensitive response (HR) which includes programmed cell death at the site of infection. Phospholipase D (PLD) mediated production of phosphatidic acid (PA) has been linked to both MTI and ETI in plants. Inhibition of PLD activity has been shown to attenuate MTI as well as ETI. In this study, we systematically tested single and double knockouts in all 12 genes encoding PLDs in Arabidopsis thaliana for effects on ETI and MTI. No single PLD could be linked to ETI triggered by recognition of effectors secreted by the bacterium Pseudomonas syringae. However, repression of PLD dependent PA production by n-butanol strongly inhibited the HR following Pseudomonas syringae effector recognition. In addition some pld mutants were more sensitive to n-butanol than wild type. Thus, the effect of mutations of PLDs could become detectable, and the corresponding genes can be proposed to be involved in the HR. Only knockout of PLDδ caused a loss of MTI-induced cell wall based defense against the non-host powdery mildew Erysiphe pisi. This is thus in stark contrast to the involvement of a multitude of PLD isoforms in the HR triggered by AvrRpm1 recognition.
PMCID: PMC4230166  PMID: 25431578
phospholipase D; hypersensitive response; Pseudomonas syringae; Arabidopsis thaliana; phosphatidic acid; pathogen defense
5.  Bayesian Tests of Topology Hypotheses with an Example from Diving Beetles 
Systematic Biology  2013;62(5):660-673.
We review Bayesian approaches to model testing in general and to the assessment of topological hypotheses in particular. We show that the standard way of setting up Bayes factor tests of the monophyly of a group, or the placement of a sample sequence in a known reference tree, can be misleading. The reason for this is related to the well-known dependency of Bayes factors on model-specific priors. Specifically, when testing tree hypotheses it is important that each hypothesis is associated with an appropriate tree space in the prior. This can be achieved by using appropriately constrained searches or by filtering trees in the posterior sample, but in a more elaborate way than typically implemented. If it is difficult to find the appropriate tree sets to be contrasted, then the posterior model odds may be more informative than the Bayes factor. We illustrate the recommended techniques using an empirical test case addressing the issue of whether two genera of diving beetles (Coleoptera: Dytiscidae), Suphrodytes and Hydroporus, should be synonymized. Our refined Bayes factor tests, in contrast to standard analyses, show that there is strong support for Suphrodytes nesting inside Hydroporus, and the genera are therefore synonymized. [Bayes factor; Coleoptera; Dytiscidae; marginal likelihood; model testing; posterior odds; reversible-jump MCMC; stepping-stone sampling.]
PMCID: PMC3739882  PMID: 23628960
6.  Fms-Like Tyrosine Kinase 3 Ligand Controls Formation of Regulatory T Cells in Autoimmune Arthritis 
PLoS ONE  2013;8(1):e54884.
Fms-like tyrosine kinase 3 ligand (Flt3L) is known as the primary differentiation and survival factor for dendritic cells (DCs). Furthermore, Flt3L is involved in the homeostatic feedback loop between DCs and regulatory T cell (Treg). We have previously shown that Flt3L accumulates in the synovial fluid in rheumatoid arthritis (RA) and that local exposure to Flt3L aggravates arthritis in mice, suggesting a possible involvement in RA pathogenesis. In the present study we investigated the role of Flt3L on DC populations, Tregs as well as inflammatory responses in experimental antigen-induced arthritis. Arthritis was induced in mBSA-immunized mice by local knee injection of mBSA and Flt3L was provided by daily intraperitoneal injections. Flow cytometry analysis of spleen and lymph nodes revealed an increased formation of DCs and subsequently Tregs in mice treated with Flt3L. Flt3L-treatment was also associated with a reduced production of mBSA specific antibodies and reduced levels of the pro-inflammatory cytokines IL-6 and TNF-α. Morphological evaluation of mBSA injected joints revealed reduced joint destruction in Flt3L treated mice. The role of DCs in mBSA arthritis was further challenged in an adoptive transfer experiment. Transfer of DCs in combination with T-cells from mBSA immunized mice, predisposed naïve recipients for arthritis and production of mBSA specific antibodies. We provide experimental evidence that Flt3L has potent immunoregulatory properties. Flt3L facilitates formation of Treg cells and by this mechanism reduces severity of antigen-induced arthritis in mice. We suggest that high systemic levels of Flt3L have potential to modulate autoreactivity and autoimmunity.
PMCID: PMC3549988  PMID: 23349985
7.  Highly Compressed Two-Dimensional Form of Water at Ambient Conditions 
Scientific Reports  2013;3:1074.
The structure of thin-film water on a BaF2(111) surface under ambient conditions was studied using x-ray absorption spectroscopy from ambient to supercooled temperatures at relative humidity up to 95%. No hexagonal ice-like structure was observed in spite of the expected templating effect of the lattice-matched (111) surface. The oxygen K-edge x-ray absorption spectrum of liquid thin-film water on BaF2 exhibits, at all temperatures, a strong resemblance to that of high-density phases for which the observed spectroscopic features correlate linearly with the density. Surprisingly, the highly compressed, high-density thin-film liquid water is found to be stable from ambient (300 K) to supercooled (259 K) temperatures, although a lower-density liquid would be expected at supercooled conditions. Molecular dynamics simulations indicate that the first layer water on BaF2(111) is indeed in a unique local structure that resembles high-density water, with a strongly collapsed second coordination shell.
PMCID: PMC3545261  PMID: 23323216
9.  The Effect of Geographical Scale of Sampling on DNA Barcoding 
Systematic Biology  2012;61(5):851-869.
Eight years after DNA barcoding was formally proposed on a large scale, CO1 sequences are rapidly accumulating from around the world. While studies to date have mostly targeted local or regional species assemblages, the recent launch of the global iBOL project (International Barcode of Life), highlights the need to understand the effects of geographical scale on Barcoding's goals. Sampling has been central in the debate on DNA Barcoding, but the effect of the geographical scale of sampling has not yet been thoroughly and explicitly tested with empirical data. Here, we present a CO1 data set of aquatic predaceous diving beetles of the tribe Agabini, sampled throughout Europe, and use it to investigate how the geographic scale of sampling affects 1) the estimated intraspecific variation of species, 2) the genetic distance to the most closely related heterospecific, 3) the ratio of intraspecific and interspecific variation, 4) the frequency of taxonomically recognized species found to be monophyletic, and 5) query identification performance based on 6 different species assignment methods. Intraspecific variation was significantly correlated with the geographical scale of sampling (R-square = 0.7), and more than half of the species with 10 or more sampled individuals (N = 29) showed higher intraspecific variation than 1% sequence divergence. In contrast, the distance to the closest heterospecific showed a significant decrease with increasing geographical scale of sampling. The average genetic distance dropped from > 7% for samples within 1 km, to < 3.5% for samples up to > 6000 km apart. Over a third of the species were not monophyletic, and the proportion increased through locally, nationally, regionally, and continentally restricted subsets of the data. The success of identifying queries decreased with increasing spatial scale of sampling; liberal methods declined from 100% to around 90%, whereas strict methods dropped to below 50% at continental scales. The proportion of query identifications considered uncertain (more than one species < 1% distance from query) escalated from zero at local, to 50% at continental scale. Finally, by resampling the most widely sampled species we show that even if samples are collected to maximize the geographical coverage, up to 70 individuals are required to sample 95% of intraspecific variation. The results show that the geographical scale of sampling has a critical impact on the global application of DNA barcoding. Scale-effects result from the relative importance of different processes determining the composition of regional species assemblages (dispersal and ecological assembly) and global clades (demography, speciation, and extinction). The incorporation of geographical information, where available, will be required to obtain identification rates at global scales equivalent to those in regional barcoding studies. Our result hence provides an impetus for both smarter barcoding tools and sprouting national barcoding initiatives—smaller geographical scales deliver higher accuracy.
PMCID: PMC3417044  PMID: 22398121
Agabini; diving beetles; DNA barcoding; Dytiscidae; iBOL; identification methods; sampling; scale effect; species monophyly
11.  Phylogenetic structure and evolution of regulatory genes and integrases of P2-like phages 
Bacteriophage  2011;1(4):207-218.
The phylogenetic relationships and structural similarities of the proteins encoded within the regulatory region (containing the integrase gene and the lytic–lysogenic transcriptional switch genes) of P2-like phages were analyzed, and compared with the phylogenetic relationship of P2-like phages inferred from four structural genes. P2-like phages are thought to be one of the most genetically homogenous phage groups but the regulatory region nevertheless varies extensively between different phage genomes.
The analyses showed that there are many types of regulatory regions, but two types can be clearly distinguished; regions similar either to the phage P2 or to the phage 186 regulatory regions. These regions were also found to be most frequent among the sequenced P2-like phage or prophage genomes, and common in phages using Escherichia coli as a host. Both the phylogenetic and the structural analyses showed that these two regions are related. The integrases as well as the cox/apl genes show a common monophyletic origin but the immunity repressor genes, the type P2 C gene and the type 186 cI gene, are likely of different origin. There was no indication of recombination between the P2–186 types of regulatory genes but the comparison of the phylogenies of the regulatory region with the phylogeny based on four structural genes revealed recombinational events between the regulatory region and the structural genes.
Less common regulatory regions were phylogenetically heterogeneous and typically contained a fusion of genes from distantly related or unknown phages and P2-like genes.
PMCID: PMC3448106  PMID: 23050214
gamma-proteobacteria; lytic-lysogenic transcriptional switch; P2-like bacteriophages; peduovirinae; phage integration; phylogenetic analysis
12.  Hyperbaric Oxygen Therapy Facilitates Healing of Chronic Foot Ulcers in Patients With Diabetes 
Diabetes Care  2010;33(5):998-1003.
Chronic diabetic foot ulcers are a source of major concern for both patients and health care systems. The aim of this study was to evaluate the effect of hyperbaric oxygen therapy (HBOT) in the management of chronic diabetic foot ulcers.
The Hyperbaric Oxygen Therapy in Diabetics with Chronic Foot Ulcers (HODFU) study was a randomized, single-center, double-blinded, placebo-controlled clinical trial. The outcomes for the group receiving HBOT were compared with those of the group receiving treatment with hyperbaric air. Treatments were given in a multi-place hyperbaric chamber for 85-min daily (session duration 95 min), five days a week for eight weeks (40 treatment sessions). The study was performed in an ambulatory setting.
Ninety-four patients with Wagner grade 2, 3, or 4 ulcers, which had been present for >3 months, were studied. In the intention-to-treat analysis, complete healing of the index ulcer was achieved in 37 patients at 1-year of follow-up: 25/48 (52%) in the HBOT group and 12/42 (29%) in the placebo group (P = 0.03). In a sub-analysis of those patients completing >35 HBOT sessions, healing of the index ulcer occurred in 23/38 (61%) in the HBOT group and 10/37 (27%) in the placebo group (P = 0.009). The frequency of adverse events was low.
The HODFU study showed that adjunctive treatment with HBOT facilitates healing of chronic foot ulcers in selected patients with diabetes.
PMCID: PMC2858204  PMID: 20427683
13.  Two novel types of hexokinases in the moss Physcomitrella patens 
BMC Plant Biology  2011;11:32.
Hexokinase catalyzes the phosphorylation of glucose and fructose, but it is also involved in sugar sensing in both fungi and plants. We have previously described two types of hexokinases in the moss Physcomitrella. Type A, exemplified by PpHxk1, the major hexokinase in Physcomitrella, is a soluble protein that localizes to the chloroplast stroma. Type B, exemplified by PpHxk2, has an N-terminal membrane anchor. Both types are found also in vascular plants, and localize to the chloroplast stroma and mitochondrial membranes, respectively.
We have now characterized all 11 hexokinase encoding genes in Physcomitrella. Based on their N-terminal sequences and intracellular localizations, three of the encoded proteins are type A hexokinases and four are type B hexokinases. One of the type B hexokinases has a splice variant without a membrane anchor, that localizes to the cytosol and the nucleus. However, we also found two new types of hexokinases with no obvious orthologs in vascular plants. Type C, encoded by a single gene, has neither transit peptide nor membrane anchor, and is found in the cytosol and in the nucleus. Type D hexokinases, encoded by three genes, have membrane anchors and localize to mitochondrial membranes, but their sequences differ from those of the type B hexokinases. Interestingly, all moss hexokinases are more similar to each other in overall sequence than to hexokinases from other plants, even though characteristic sequence motifs such as the membrane anchor of the type B hexokinases are highly conserved between moss and vascular plants, indicating a common origin for hexokinases of the same type.
We conclude that the hexokinase gene family is more diverse in Physcomitrella, encoding two additional types of hexokinases that are absent in vascular plants. In particular, the presence of a cytosolic and nuclear hexokinase (type C) sets Physcomitrella apart from vascular plants, and instead resembles yeast, where all hexokinases localize to the cytosol. The fact that all moss hexokinases are more similar to each other than to hexokinases from vascular plants, even though both type A and type B hexokinases are present in all plants, further suggests that the hexokinase gene family in Physcomitrella has undergone concerted evolution.
PMCID: PMC3045890  PMID: 21320325
14.  The Artelon CMC spacer compared with tendon interposition arthroplasty 
Acta Orthopaedica  2010;81(2):237-244.
Background and purpose The Artelon CMC spacer is designed for surgical treatment of osteoarthritis (OA) in the carpometacarpal joint of the thumb (CMC-I). Good results using this degradable device were previously presented in a pilot study. We now present results from a larger randomized, controlled, multicenter study.
Patients and methods 109 patients (94 females) with a mean age of 60 (42–83) years, suffering from painful CMC OA, were included in the study at 7 centers in Sweden. The patients were randomized to Artelon CMC spacer (test, n = 72) or tendon arthroplasty (control, n = 37) at a ratio of 2:1. Perceived pain was recorded on a visual analog scale (VAS) before treatment and after 3, 6, and 12 months, when measuring maximal tripod pinch strength (primary outcome measure). In addition, range of motion, radiographic findings, and functional testing were recorded pre- and postoperatively.
Results Swelling and pain were more common in the test group and 6 implants were removed because of such symptoms. 5 of these patients did not receive antibiotics preoperatively according to the study protocol. In a per-protocol analysis, i.e. patients without signs of concomitant OA in the scaphoid-trapezium-trapezoid (STT) joint and those in the test group who received antibiotics, the mean difference in tripod pinch strength increase, adjusted for baseline, was 1.4 kg in favor of the test group (not statistically significant). Statistically significant pain relief was achieved in both groups, with perceived pain gradually decreasing during the follow-up period. In the intention-to-treat analysis but not in the per-protocol analysis, significantly better pain relief (VAS) was obtained in the control group. Patient-perceived disability evaluated by the DASH questionnaire improved in both groups.
Interpretation The Artelon CMC spacer did not show superior results compared to tendon interposition arthroplasty. Proper use of preoperative antibiotics and a thorough patient selection appear to be important for the results.
PMCID: PMC2895345  PMID: 20180717
15.  Mosaic structure of intragenic repetitive elements in histone H1-like protein Hc2 varies within serovars of Chlamydia trachomatis 
BMC Microbiology  2010;10:81.
The histone-like protein Hc2 binds DNA in Chlamydia trachomatis and is known to vary in size between 165 and 237 amino acids, which is caused by different numbers of lysine-rich pentamers. A more complex structure was seen in this study when sequences from 378 specimens covering the hctB gene, which encodes Hc2, were compared.
This study shows that the size variation is due to different numbers of 36-amino acid long repetitive elements built up of five pentamers and one hexamer. Deletions and amino acid substitutions result in 14 variants of repetitive elements and these elements are combined into 22 configurations. A protein with similar structure has been described in Bordetella but was now also found in other genera, including Burkholderia, Herminiimonas, Minibacterium and Ralstonia.
Sequence determination resulted in 41 hctB variants that formed four clades in phylogenetic analysis. Strains causing the eye disease trachoma and strains causing invasive lymphogranuloma venereum infections formed separate clades, while strains from urogenital infections were more heterogeneous. Three cases of recombination were identified. The size variation of Hc2 has previously been attributed to deletions of pentamers but we show that the structure is more complex with both duplication and deletions of 36-amino acid long elements.
The polymorphisms in Hc2 need to be further investigated in experimental studies since DNA binding is essential for the unique biphasic life cycle of the Chlamydiacae. The high sequence variation in the corresponding hctB gene enables phylogenetic analysis and provides a suitable target for the genotyping of C. trachomatis.
PMCID: PMC2848022  PMID: 20236532
16.  Multiple Origins of Elytral Reticulation Modifications in the West Palearctic Agabus bipustulatus Complex (Coleoptera, Dytiscidae) 
PLoS ONE  2010;5(2):e9034.
The Agabus bipustulatus complex includes one of Europe's most widely distributed and common diving beetles. This complex, which is known for its large morphological variation, has a complex demographic and altitudinal variation in elytral reticulation. The various depth of the reticulation imprint, both in smaller and larger meshes, results in both mat and shiny individuals, as well as intermediate forms. The West Palearctic lowland is inhabited by a sexually dimorphic form, with shiny males and mat females. In mountain regions, shiny individuals of both sexes are found intermixed with mat individuals or in pure populations in central and southern areas, whereas pure populations of mat individuals are exclusively found in the northern region at high altitude. Sexual selection is proposed as a driving force in shaping this variation. However, the occurrence of different types of reticulation in both sexes and disjunct geographical distribution patterns suggest an additional function of the reticulation. Here we investigate the phylogeographical history, genetic structure and reticulation variation of several named forms within the Agabus bipustulatus complex including A. nevadensis. The molecular analyses recognised several well-supported clades within the complex. Several of the named forms had two or more independent origins. Few south European populations were uniform in reticulation patterns, and the males were found to display large variation. Reticulation diversity and population genetic variability were clearly correlated to altitude, but no genetic differences were detected among populations with mixed or homogenous forms. Observed reduction in secondary reticulation in female and increased variance in male at high altitude in South Europe may be explained by the occurrence of an additional selective force, beside sexual selection. The combined effect of these selective processes is here demonstrated in an extreme case to generate isolation barriers between populations at high altitudes. Here we discuss this selective force in relation to thermal selection.
PMCID: PMC2815794  PMID: 20140264
17.  Classification of Myoviridae bacteriophages using protein sequence similarity 
BMC Microbiology  2009;9:224.
We advocate unifying classical and genomic classification of bacteriophages by integration of proteomic data and physicochemical parameters. Our previous application of this approach to the entirely sequenced members of the Podoviridae fully supported the current phage classification of the International Committee on Taxonomy of Viruses (ICTV). It appears that horizontal gene transfer generally does not totally obliterate evolutionary relationships between phages.
CoreGenes/CoreExtractor proteome comparison techniques applied to 102 Myoviridae suggest the establishment of three subfamilies (Peduovirinae, Teequatrovirinae, the Spounavirinae) and eight new independent genera (Bcep781, BcepMu, FelixO1, HAP1, Bzx1, PB1, phiCD119, and phiKZ-like viruses). The Peduovirinae subfamily, derived from the P2-related phages, is composed of two distinct genera: the "P2-like viruses", and the "HP1-like viruses". At present, the more complex Teequatrovirinae subfamily has two genera, the "T4-like" and "KVP40-like viruses". In the genus "T4-like viruses" proper, four groups sharing >70% proteins are distinguished: T4-type, 44RR-type, RB43-type, and RB49-type viruses. The Spounavirinae contain the "SPO1-"and "Twort-like viruses."
The hierarchical clustering of these groupings provide biologically significant subdivisions, which are consistent with our previous analysis of the Podoviridae.
PMCID: PMC2771037  PMID: 19857251
18.  Emergence and Spread of Chlamydia trachomatis Variant, Sweden 
Emerging Infectious Diseases  2008;14(9):1462-1465.
A variant of Chlamydia trachomatis that had escaped detection by commonly used systems was discovered in Sweden in 2006. In a nationwide study, we found that it is now prevalent across Sweden, irrespective of the detection system used. Genetic analysis by multilocus sequence typing identified a predominant variant, suggesting recent emergence.
PMCID: PMC2603114  PMID: 18760021
Chlamydia trachomatis; Sweden; genetic variant; diagnostics; PCR; infectious diseases; epidemiology; surveillance; dispatch
19.  TaqMan Assay for Swedish Chlamydia trachomatis Variant 
Emerging Infectious Diseases  2007;13(9):1432-1434.
PMCID: PMC2857290  PMID: 18252135
Chlamydia trachomatis; Swedish variant; diagnostics; real-time PCR; infectious diseases; outbreak; letter
20.  Evolution of Immunity and Host Chromosome Integration Site of P2-Like Coliphages 
Journal of Bacteriology  2006;188(11):3923-3935.
The amount and distribution of variation in the genomic region containing the genes in the lytic-lysogenic genetic switch and the sequence that determines the integration site into the host chromosome were analyzed for 38 P2-like phages from Escherichia coli. The genetic switch consists of two convergent mutually exclusive promoters, Pe and Pc, and two repressors, C and Cox. The immunity repressor C blocks the early Pe promoter, leading to the establishment of lysogeny. The Cox repressor blocks expression of Pc, allowing lytic growth. Phylogenetic analyses showed that the C and Cox proteins were distributed into seven distinct classes. The phylogenetic relationship differed between the two proteins, and we showed that homologous recombination plays a major role in creating alterations in the genetic switch, leading to new immunity classes. Analyses of the host integration site for these phages resulted in the discovery of a previously unknown site, and there were at least four regular integration sites. Interestingly, we found no case where phages of the same immunity class had different host attachment sites. The evolution of immunity and integration sites is complex, since it involves interactions both between the phages themselves and between phages and hosts, and often, both regulatory proteins and target DNA must change.
PMCID: PMC1482927  PMID: 16707684
21.  Identification of a Gene Encoding a Functional Reverse Transcriptase within a Highly Variable Locus in the P2-Like Coliphages 
Journal of Bacteriology  2006;188(4):1643-1647.
The P2-like coliphages are highly similar; the structural genes show at least 96% identity. However, at two loci they have genes believed to be horizontally transferred. We show that the genetic content at the second loci, the TO region, contains six completely different sequences with high AT contents and with different open reading frames. The product of one of them exhibits reverse transcriptase activity and blocks infection of phage T5.
PMCID: PMC1367236  PMID: 16452449
22.  Phylogenetic and Functional Analysis of the Bacteriophage P1 Single-Stranded DNA-Binding Protein 
Journal of Virology  2002;76(19):9695-9701.
Bacteriophage P1 encodes a single-stranded DNA-binding protein (SSB-P1), which shows 66% amino acid sequence identity to the SSB protein of the host bacterium Escherichia coli. A phylogenetic analysis indicated that the P1 ssb gene coexists with its E. coli counterpart as an independent unit and does not represent a recent acquirement of the phage. The P1 and E. coli SSB proteins are fully functionally interchangeable. SSB-P1 is nonessential for phage growth in an exponentially growing E. coli host, and it is sufficient to promote bacterial growth in the absence of the E. coli SSB protein. Expression studies showed that the P1 ssb gene is transcribed only, in an rpoS-independent fashion, during stationary-phase growth in E. coli. Mixed infection experiments demonstrated that a wild-type phage has a selective advantage over an ssb-null mutant when exposed to a bacterial host in the stationary phase. These results reconciled the observed evolutionary conservation with the seemingly redundant presence of ssb genes in many bacteriophages and conjugative plasmids.
PMCID: PMC136491  PMID: 12208948

Results 1-22 (22)