Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Inhibitor-Induced Conformational Stabilization and Structural Alteration of a Mip-Like Peptidyl Prolyl cis-trans Isomerase and Its C-Terminal Domain 
PLoS ONE  2014;9(7):e102891.
FKBP22, an Escherichia coli-encoded PPIase (peptidyl-prolyl cis-trans isomerase) enzyme, shares substantial identity with the Mip-like pathogenic factors, caries two domains, exists as a dimer in solution and binds some immunosuppressive drugs (such as FK506 and rapamycin) using its C-terminal domain (CTD). To understand the effects of these drugs on the structure and stability of the Mip-like proteins, rFKBP22 (a chimeric FKBP22) and CTD+ (a CTD variant) have been studied in the presence and absence of rapamycin using different probes. We demonstrated that rapamycin binding causes minor structural alterations of rFKBP22 and CTD+. Both the proteins (equilibrated with rapamycin) were unfolded via the formation of intermediates in the presence of urea. Further study revealed that thermal unfolding of both rFKBP22 and rapamycin-saturated rFKBP22 occurred by a three-state mechanism with the synthesis of intermediates. Intermediate from the rapamycin-equilibrated rFKBP22 was formed at a comparatively higher temperature. All intermediates carried substantial extents of secondary and tertiary structures. Intermediate resulted from the thermal unfolding of rFKBP22 existed as the dimers in solution, carried an increased extent of hydrophobic surface and possessed relatively higher rapamycin binding activity. Despite the formation of intermediates, both the thermal and urea-induced unfolding reactions were reversible in nature. Unfolding studies also indicated the considerable stabilization of both proteins by rapamycin binding. The data suggest that rFKBP22 or CTD+ could be exploited to screen the rapamycin-like inhibitors in the future.
PMCID: PMC4114562  PMID: 25072141
2.  Biochemical characterization of L1 repressor mutants with altered operator DNA binding activity 
Bacteriophage  2012;2(2):79-88.
A mycobacteriophage-specific repressor with the enhanced operator DNA binding activity at 32°C and no activity at 42°C has not been generated yet though it has potential in developing a temperature-controlled expression vector for mycobacterial system. To create such an invaluable repressor, here we have characterized four substitution mutants of mycobacteriophage L1 repressor by various probes. The W69C repressor mutant displayed no operator DNA binding activity, whereas, P131L repressor mutant exhibited very little DNA binding at 32°C. In contrast, both E36K and E39Q repressor mutants showed significantly higher DNA binding activity at 32°C, particularly, under in vivo conditions. Various mutations also had different effects on the structure, stability and the dimerization ability of L1 repressor. While the W69C mutant possessed a distorted tertiary structure, the P131L mutant dimerized poorly in solution at 32°C. Interestingly, both these mutants lost their two-domain structure and aggregated rapidly at 42°C. Of the native and mutant L1 repressor proteins, W69C and E36K mutants appeared to be the least stable at 32°C. Studies together suggest that the mutants, particularly P131L and E39Q mutants, could be used for creating a high affinity temperature-sensitive repressor in the future.
PMCID: PMC3442829  PMID: 23050218
mycobacteriophage L1; repressor; early promoter; operator DNA; mutant repressor and expression vector

Results 1-2 (2)