Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile Thermus thermophilus 
Bacteriophage  2011;1(3):152-164.
A lytic phage, designated as ϕTMA, was isolated from a Japanese hot spring using Thermus thermophilus HB27 as an indicator strain. Electron microscopic examination showed that ϕTMA had an icosahedral head and a contractile tail. The circular double-stranded DNA sequence of ϕTMA was 151,483 bp in length, and its organization was essentially same as that of ϕYS40 except that the ϕTMA genome contained genes for a pair of transposase and resolvase, and a gene for a serine to asparagine substituted ortholog of the protein involved in the initiation of the ϕYS40 genomic DNA synthesis. The different host specificities of ϕTMA and ϕYS40 could be explained by the sequence differences in the C-terminal regions of their distal tail fiber proteins. The ΔpilA knockout strains of T. thermophilus showed simultaneous loss of sensitivity to their cognate phages, pilus structure, twitching motility and competence for natural transformation, thus suggesting that the phage infection required the intact host pili. Pulsed-field gel electrophoresis analysis of the ϕTMA and ϕYS40 genomes revealed that the length of their DNA exceeded 200 kb, indicating that the terminal redundancy is more than 30% of the closed circular form. Proteomic analysis of the ϕTMA virion using a combination of N-terminal sequencing and mass spectrometric analysis of peptide fragments suggested that the maturation of several proteins involved in the phage assembly process was mediated by a trypsin-like protease. The gene order of the phage structural proteins was also discussed.
PMCID: PMC3225780  PMID: 22164349
Thermus thermophilus; myovirus; genomics; antagonistic coevolution; proteomics
2.  Large Conformational Changes in a Kinesin Motor Catalyzed by Interaction with Microtubules 
Molecular cell  2006;23(6):913-923.
Kinesin motor proteins release nucleotide upon interaction with microtubules (MTs), then bind and hydrolyze ATP to move along the MT. Although crystal structures of kinesin motors bound to nucleotides have been solved, nucleotide-free structures have not. Here, using cryomicroscopy and three-dimensional (3D) reconstruction, we report the structure of MTs decorated with a Kinesin-14 motor, Kar3, in the nucleotide-free state, as well as with ADP and AMPPNP, with resolution sufficient to show α helices. We find large structural changes in the empty motor, including melting of the switch II helix α4, closure of the nucleotide binding pocket, and changes in the central β sheet reminiscent of those reported for nucleotide-free myosin crystal structures. We propose that the switch II region of the motor controls docking of the Kar3 neck by conformational changes in the central β sheet, similar to myosin, rather than by rotation of the motor domain, as proposed for the Kif1A kinesin motor.
PMCID: PMC1635653  PMID: 16973442
3.  Structural basis for recognition of the matrix attachment region of DNA by transcription factor SATB1 
Nucleic Acids Research  2007;35(15):5073-5084.
Special AT-rich sequence binding protein 1 (SATB1) regulates gene expression essential in immune T-cell maturation and switching of fetal globin species, by binding to matrix attachment regions (MARs) of DNA and inducing a local chromatin remodeling. Previously we have revealed a five-helix structure of the N-terminal CUT domain, which is essentially the folded region in the MAR-binding domain, of human SATB1 by NMR. Here we determined crystal structure of the complex of the CUT domain and a MAR DNA, in which the third helix of the CUT domain deeply enters the major groove of DNA in the B-form. Bases of 5′-CTAATA-3′ sequence are contacted by this helix, through direct and water-mediated hydrogen bonds and apolar and van der Waals contacts. Mutations at conserved base-contacting residues, Gln402 and Gly403, reduced the DNA-binding activity, which confirmed the importance of the observed interactions involving these residues. A significant number of equivalent contacts are observed also for typically four-helix POU-specific domains of POU-homologous proteins, indicating that these domains share a common framework of the DNA-binding mode, recognizing partially similar DNA sequences.
PMCID: PMC1976457  PMID: 17652321
4.  Structure of RadB recombinase from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1: an implication for the formation of a near-7-fold helical assembly 
Nucleic Acids Research  2005;33(10):3412-3423.
The X-ray crystal structure of RadB from Thermococcus kodakaraensis KOD1, an archaeal homologue of the RecA/Rad51 family proteins, have been determined in two crystal forms. The structure represents the core ATPase domain of the RecA/Rad51 proteins. Two independent molecules in the type 1 crystal were roughly related by 7-fold screw symmetry whereas non-crystallographic 2-fold symmetry was observed in the type 2 crystal. The dimer structure in the type 1 crystal is extended to construct a helical assembly, which resembles the filamentous structures reported for other RecA/Rad51 proteins. The molecular interface in the type 1 dimer is formed by facing a basic surface patch of one monomer to an acidic one of the other. The empty ATP binding pocket is located at the interface and barely concealed from the outside similarly to that in the active form of the RecA filament. The model assembly has a positively charged belt on one surface bordering the helical groove suitable for facile binding of DNA. Electron microscopy has revealed that, in the absence of ATP and DNA, RadB forms a filament with a similar diameter to that of the hypothetical assembly, although its helical properties were not confirmed.
PMCID: PMC1150280  PMID: 15956102

Results 1-4 (4)