PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Sadiq, aha")
1.  MET As a Possible Target for Non–Small-Cell Lung Cancer 
Journal of Clinical Oncology  2013;31(8):1089-1096.
Lung cancer is a heterogeneous group of disorders that is now being subdivided into molecular subtypes with dedicated targeted therapies. The MET receptor tyrosine kinase has been identified as aberrantly overexpressed, potentially having activating mutations, and amplified in certain subsets of lung cancers. The ligand hepatocyte growth factor (HGF) can also be overexpressed in lung cancer or expressed in stroma, and both the MET receptor and the HGF ligand can be targets for therapeutics, especially in lung cancer. Activation of MET leads to a plethora of biochemical and biologic changes both in normal and cancerous cells. Preclinically, it has been shown that silencing or inactivating MET leads to decreased viability of cancer cells. There are a number of compounds against MET/HGF in clinical trials that have been shown to be active in lung cancers. This review will summarize the biology of MET as well as its therapeutic inhibition in lung cancer.
doi:10.1200/JCO.2012.43.9422
PMCID: PMC3589702  PMID: 23401458
2.  Utilisation of a thoracic oncology database to capture radiological and pathological images for evaluation of response to chemotherapy in patients with malignant pleural mesothelioma 
BMJ Open  2012;2(5):e001620.
Objective
An area of need in cancer informatics is the ability to store images in a comprehensive database as part of translational cancer research. To meet this need, we have implemented a novel tandem database infrastructure that facilitates image storage and utilisation.
Background
We had previously implemented the Thoracic Oncology Program Database Project (TOPDP) database for our translational cancer research needs. While useful for many research endeavours, it is unable to store images, hence our need to implement an imaging database which could communicate easily with the TOPDP database.
Methods
The Thoracic Oncology Research Program (TORP) imaging database was designed using the Research Electronic Data Capture (REDCap) platform, which was developed by Vanderbilt University. To demonstrate proof of principle and evaluate utility, we performed a retrospective investigation into tumour response for malignant pleural mesothelioma (MPM) patients treated at the University of Chicago Medical Center with either of two analogous chemotherapy regimens and consented to at least one of two UCMC IRB protocols, 9571 and 13473A.
Results
A cohort of 22 MPM patients was identified using clinical data in the TOPDP database. After measurements were acquired, two representative CT images and 0–35 histological images per patient were successfully stored in the TORP database, along with clinical and demographic data.
Discussion
We implemented the TORP imaging database to be used in conjunction with our comprehensive TOPDP database. While it requires an additional effort to use two databases, our database infrastructure facilitates more comprehensive translational research.
Conclusions
The investigation described herein demonstrates the successful implementation of this novel tandem imaging database infrastructure, as well as the potential utility of investigations enabled by it. The data model presented here can be utilised as the basis for further development of other larger, more streamlined databases in the future.
doi:10.1136/bmjopen-2012-001620
PMCID: PMC3488720  PMID: 23103606
Basic Sciences

Results 1-2 (2)