PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Can growth inhibition assays (GIA) predict blood-stage malaria vaccine efficacy? 
An effective vaccine against P. falciparum malaria remains a global health priority. Blood-stage vaccines are an important component of this effort, with some indications of recent progress. However only a fraction of potential blood-stage antigens have been tested, highlighting a critical need for efficient down-selection strategies. Functional in vitro assays such as the growth/invasion inhibition assays (GIA) are widely used, but it is unclear whether GIA activity correlates with protection or predicts vaccine efficacy. While preliminary data in controlled human malaria infection (CHMI) studies indicate a possible association between in vitro and in vivo parasite growth rates, there have been conflicting results of immunoepidemiology studies, where associations with exposure rather than protection have been observed. In addition, GIA-interfering antibodies in vaccinated individuals from endemic regions may limit assay sensitivity in heavily malaria-exposed populations. More work is needed to establish the utility of GIA for blood-stage vaccine development.
doi:10.4161/hv.19712
PMCID: PMC3495712  PMID: 22508415
GIA; Growth inhibition assay; Plasmodium falciparum; blood-stage; growth inhibition activity; malaria; parasite multiplication rate; vaccine
2.  Distinguishing malaria and influenza: Early clinical features in controlled human experimental infection studies☆ 
Summary
During the H1N1 influenza pandemic (pH1N1/09) diagnostic algorithms were developed to guide antiviral provision. However febrile illnesses are notoriously difficult to distinguish clinically. Recent evidence highlights the importance of incorporating travel history into diagnostic algorithms to prevent the catastrophic misdiagnosis of life-threatening infections such as malaria.
We applied retrospectively the UK pH1N1/09 case definition to a unique cohort of healthy adult volunteers exposed to Plasmodium falciparum malaria or influenza to assess the predictive value of this case definition, and to explore the distinguishing clinical features of early phase infection with these pathogens under experimental conditions.
For influenza exposure the positive predictive value of the pH1N1/09 case definition was only 0.38 (95% CI: 0.06–0.60), with a negative predictive value of 0.27 (95% CI: 0.02–0.51). Interestingly, 8/11 symptomatic malaria-infected adults would have been inappropriately classified with influenza by the pH1N1/09 case definition, while 5/8 symptomatic influenza-exposed volunteers would have been classified without influenza (P = 0.18 Fisher's exact). Cough (P = 0.005) and nasal symptoms (P = 0.001) were the only clinical features that distinguished influenza-exposed from malaria-exposed volunteers.
An open mind regarding the clinical cause of undifferentiated febrile illness, particularly in the absence of upper respiratory tract symptoms, remains important even during influenza pandemic settings. These data support incorporating travel history into pandemic algorithms.
doi:10.1016/j.tmaid.2012.03.008
PMCID: PMC3778896  PMID: 22531678
Experimental infection; Pandemic influenza; Predictive value; Clinical features; Healthy volunteers
4.  Assessment of Immune Interference, Antagonism and Diversion following Human Immunization with Bi-Allelic Blood-Stage Malaria Viral Vectored Vaccines and Controlled Malaria Infection 
Overcoming antigenic variation is one of the major challenges in the development of an effective vaccine against Plasmodium falciparum, a causative agent of human malaria. Inclusion of multiple antigen variants in subunit vaccine candidates is one strategy that has aimed to overcome this problem for the leading blood-stage malaria vaccine targets, merozoite surface protein 1 (MSP1) and apical membrane antigen 1 (AMA1). However previous studies, utilizing malaria antigens, have concluded that inclusion of multiple allelic variants, encoding altered peptide ligands (APL), in such a vaccine may be detrimental to both the priming and in vivo re-stimulation of antigen-experienced T cells. Here we analyze the T cell responses to two alleles of MSP1 and AMA1 induced by vaccination of malaria-naïve adult volunteers with bi-valent viral vectored vaccine candidates. We show a significant bias to the 3D7/MAD20 allele compared to the Wellcome allele for the 33kDa region of MSP1, but not for the 19kDa fragment or the AMA1 antigen. Whilst this bias could be caused by ‘immune interference’ at priming, the data don’t support a significant role for ‘immune antagonism’ during memory T cell re-stimulation, despite observation of the latter at a minimal epitope level in vitro. A lack of class I HLA epitopes in the Wellcome allele that are recognized by vaccinated volunteers may in fact contribute to the observed bias. We also show that controlled infection with 3D7 strain P. falciparum parasites neither boosts existing 3D7-specific T cell responses nor appears to ‘immune divert’ cellular responses towards the Wellcome allele.
doi:10.4049/jimmunol.1201455
PMCID: PMC3672846  PMID: 23293353
5.  Comparison of Modeling Methods to Determine Liver-to-blood Inocula and Parasite Multiplication Rates During Controlled Human Malaria Infection 
The Journal of Infectious Diseases  2013;208(2):340-345.
Controlled human malaria infection is used to measure efficacy of candidate malaria vaccines before field studies are undertaken. Mathematical modeling using data from quantitative polymerase chain reaction (qPCR) parasitemia monitoring can discriminate between vaccine effects on the parasite's liver and blood stages. Uncertainty regarding the most appropriate modeling method hinders interpretation of such trials.
We used qPCR data from 267 Plasmodium falciparum infections to compare linear, sine-wave, and normal-cumulative-density-function models. We find that the parameters estimated by these models are closely correlated, and their predictive accuracy for omitted data points was similar. We propose that future studies include the linear model.
doi:10.1093/infdis/jit156
PMCID: PMC3685228  PMID: 23570846
clinical trial; malaria; modeling; Plasmodium falciparum; qPCR; vaccine
6.  Controlled Human Blood Stage Malaria Infection: Current Status and Potential Applications 
Controlled human malaria infection by blood stage parasite (BSP) inoculation is an alternative to the well-established model of infection with Plasmodium falciparum sporozoites delivered by mosquito bites. The BSP model has been utilized less frequently, but its use is increasing. Advantages of BSP challenge include greater ease of administration, better standardization of the infecting dose per volunteer, and good inter-study reproducibility of in vivo parasite dynamics. Recently, a surprising reduction in clinical symptoms at microscopic patency in the BSP model has been identified, which has an undefined and intriguing pathophysiologic basis, but may make this approach more acceptable to volunteers. We summarize clinical, parasitologic, and immunologic data from all BSP challenges to date, explore differences between the BSP and sporozoite models, and propose future applications for BSP challenge.
doi:10.4269/ajtmh.2012.11-0504
PMCID: PMC3403771  PMID: 22492136
7.  Safety and Immunogenicity of Heterologous Prime-Boost Immunisation with Plasmodium falciparum Malaria Candidate Vaccines, ChAd63 ME-TRAP and MVA ME-TRAP, in Healthy Gambian and Kenyan Adults 
PLoS ONE  2013;8(3):e57726.
Background
Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI).
Methodology
We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns.
Results
ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC).
Conclusions
ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted.
Trial Registration
Pactr.org PACTR2010020001771828
Pactr.org PACTR201008000221638
ClinicalTrials.gov NCT01373879 NCT01373879
ClinicalTrials.gov NCT01379430 NCT01379430
doi:10.1371/journal.pone.0057726
PMCID: PMC3602521  PMID: 23526949
8.  Risk factors for failure of outpatient parenteral antibiotic therapy (OPAT) in infective endocarditis 
Objectives
To identify risk factors for failure of outpatient antibiotic therapy (OPAT) in infective endocarditis (IE).
Patients and methods
We identified IE cases managed at a single centre over 12 years from a prospectively maintained database. ‘OPAT failure’ was defined as unplanned readmission or antibiotic switch due to adverse drug reaction or antibiotic resistance. We analysed patient and disease-related risk factors for OPAT failure by univariate and multivariate logistic regression. We also retrospectively collected follow-up data on adverse disease outcome (defined as IE-related death or relapse) and performed Kaplan–Meier survival analysis up to 36 months following OPAT.
Results
We identified 80 episodes of OPAT in IE. Failure occurred in 25/80 episodes (31.3%). On multivariate analysis, cardiac or renal failure [pooled OR 7.39 (95% CI 1.84–29.66), P = 0.005] and teicoplanin therapy [OR 8.69 (95% CI 2.01–37.47), P = 0.004] were independently associated with increased OPAT failure. OPAT failure with teicoplanin occurred despite therapeutic plasma levels. OPAT failure predicted adverse disease outcome up to 36 months (P = 0.016 log-rank test).
Conclusions
These data caution against selecting patients with endocarditis for OPAT in the presence of cardiac or renal failure and suggest teicoplanin therapy may be associated with suboptimal OPAT outcomes. Alternative regimens to teicoplanin in the OPAT setting should be further investigated.
doi:10.1093/jac/dkt046
PMCID: PMC3682687  PMID: 23475647
glycopeptides; ceftriaxone; prosthetic valve endocarditis; native valve endocarditis; outcomes; teicoplanin
9.  Comparison of Clinical and Parasitological Data from Controlled Human Malaria Infection Trials 
PLoS ONE  2012;7(6):e38434.
Background
Exposing healthy human volunteers to Plasmodium falciparum-infected mosquitoes is an accepted tool to evaluate preliminary efficacy of malaria vaccines. To accommodate the demand of the malaria vaccine pipeline, controlled infections are carried out in an increasing number of centers worldwide. We assessed their safety and reproducibility.
Methods
We reviewed safety and parasitological data from 128 malaria-naïve subjects participating in controlled malaria infection trials conducted at the University of Oxford, UK, and the Radboud University Nijmegen Medical Center, The Netherlands. Results were compared to a report from the US Military Malaria Vaccine Program.
Results
We show that controlled human malaria infection trials are safe and demonstrate a consistent safety profile with minor differences in the frequencies of arthralgia, fatigue, chills and fever between institutions. But prepatent periods show significant variation. Detailed analysis of Q-PCR data reveals highly synchronous blood stage parasite growth and multiplication rates.
Conclusions
Procedural differences can lead to some variation in safety profile and parasite kinetics between institutions. Further harmonization and standardization of protocols will be useful for wider adoption of these cost-effective small-scale efficacy trials. Nevertheless, parasite growth rates are highly reproducible, illustrating the robustness of controlled infections as a valid tool for malaria vaccine development.
doi:10.1371/journal.pone.0038434
PMCID: PMC3372522  PMID: 22701640
10.  Preliminary Assessment of the Efficacy of a T-Cell–Based Influenza Vaccine, MVA-NP+M1, in Humans 
A single vaccination with MVA-NP+M1 boosts T-cell responses to conserved influenza antigens in humans. Protection against influenza disease and virus shedding was demonstrated in an influenza virus challenge study.
Background. The novel influenza vaccine MVA-NP+M1 is designed to boost cross-reactive T-cell responses to internal antigens of the influenza A virus that are conserved across all subtypes, providing protection against both influenza disease and virus shedding against all influenza A viruses. Following a phase 1 clinical study that demonstrated vaccine safety and immunogenicity, a phase 2a vaccination and influenza challenge study has been conducted in healthy adult volunteers.
Methods. Volunteers with no measurable serum antibodies to influenza A/Wisconsin/67/2005 received either a single vaccination with MVA-NP+M1 or no vaccination. T-cell responses to the vaccine antigens were measured at enrollment and again prior to virus challenge. All volunteers underwent intranasal administration of influenza A/Wisconsin/67/2005 while in a quarantine unit and were monitored for symptoms of influenza disease and virus shedding.
Results. Volunteers had a significantly increased T-cell response to the vaccine antigens following a single dose of the vaccine, with an increase in cytolytic effector molecules. Intranasal influenza challenge was undertaken without safety issues. Two of 11 vaccinees and 5 of 11 control subjects developed laboratory-confirmed influenza (symptoms plus virus shedding). Symptoms of influenza were less pronounced in the vaccinees and there was a significant reduction in the number of days of virus shedding in those vaccinees who developed influenza (mean, 1.09 days in controls, 0.45 days in vaccinees, P = .036).
Conclusions. This study provides the first demonstration of clinical efficacy of a T-cell–based influenza vaccine and indicates that further clinical development should be undertaken.
Clinical Trials Registration. NCT00993083.
doi:10.1093/cid/cis327
PMCID: PMC3369564  PMID: 22441650
11.  Phase Ia Clinical Evaluation of the Safety and Immunogenicity of the Plasmodium falciparum Blood-Stage Antigen AMA1 in ChAd63 and MVA Vaccine Vectors 
PLoS ONE  2012;7(2):e31208.
Background
Traditionally, vaccine development against the blood-stage of Plasmodium falciparum infection has focused on recombinant protein-adjuvant formulations in order to induce high-titer growth-inhibitory antibody responses. However, to date no such vaccine encoding a blood-stage antigen(s) alone has induced significant protective efficacy against erythrocytic-stage infection in a pre-specified primary endpoint of a Phase IIa/b clinical trial designed to assess vaccine efficacy. Cell-mediated responses, acting in conjunction with functional antibodies, may be necessary for immunity against blood-stage P. falciparum. The development of a vaccine that could induce both cell-mediated and humoral immune responses would enable important proof-of-concept efficacy studies to be undertaken to address this question.
Methodology
We conducted a Phase Ia, non-randomized clinical trial in 16 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding two alleles (3D7 and FVO) of the P. falciparum blood-stage malaria antigen; apical membrane antigen 1 (AMA1). ChAd63-MVA AMA1 administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to both alleles 3D7 (median 2036 SFU/million PBMC) and FVO (median 1539 SFU/million PBMC), with a mixed CD4+/CD8+ phenotype, as well as substantial AMA1-specific serum IgG responses (medians of 49 µg/mL and 41 µg/mL for 3D7 and FVO AMA1 respectively) that demonstrated growth inhibitory activity in vitro.
Conclusions
ChAd63-MVA is a safe and highly immunogenic delivery platform for both alleles of the AMA1 antigen in humans which warrants further efficacy testing. ChAd63-MVA is a promising heterologous prime-boost vaccine strategy that could be applied to numerous other diseases where strong cellular and humoral immune responses are required for protection.
Trial Registration
ClinicalTrials.gov NCT01095055
doi:10.1371/journal.pone.0031208
PMCID: PMC3283618  PMID: 22363582
12.  Clinical Assessment of a Recombinant Simian Adenovirus ChAd63: A Potent New Vaccine Vector 
The Journal of Infectious Diseases  2012;205(5):772-781.
Background. Vaccine development in human Plasmodium falciparum malaria has been hampered by the exceptionally high levels of CD8+ T cells required for efficacy. Use of potently immunogenic human adenoviruses as vaccine vectors could overcome this problem, but these are limited by preexisting immunity to human adenoviruses.
Methods. From 2007 to 2010, we undertook a phase I dose and route finding study of a new malaria vaccine, a replication-incompetent chimpanzee adenovirus 63 (ChAd63) encoding the preerythrocytic insert multiple epitope thrombospondin-related adhesion protein (ME-TRAP; n = 54 vaccinees) administered alone (n = 28) or with a modified vaccinia virus Ankara (MVA) ME-TRAP booster immunization 8 weeks later (n = 26). We observed an excellent safety profile. High levels of TRAP antigen–specific CD8+ and CD4+ T cells, as detected by interferon γ enzyme-linked immunospot assay and flow cytometry, were induced by intramuscular ChAd63 ME-TRAP immunization at doses of 5 × 1010 viral particles and above. Subsequent administration of MVA ME-TRAP boosted responses to exceptionally high levels, and responses were maintained for up to 30 months postvaccination.
Conclusions. The ChAd63 chimpanzee adenovirus vector appears safe and highly immunogenic, providing a viable alternative to human adenoviruses as vaccine vectors for human use.
Clinical Trials Registration. NCT00890019.
doi:10.1093/infdis/jir850
PMCID: PMC3274376  PMID: 22275401
13.  Viral Determinants of HIV-1 Macrophage Tropism 
Viruses  2011;3(11):2255-2279.
Macrophages are important target cells for HIV-1 infection that play significant roles in the maintenance of viral reservoirs and other aspects of pathogenesis. Understanding the determinants of HIV-1 tropism for macrophages will inform HIV-1 control and eradication strategies. Tropism for macrophages is both qualitative (infection or not) and quantitative (replication capacity). For example many R5 HIV-1 isolates cannot infect macrophages, but for those that can the macrophage replication capacity can vary by up to 1000-fold. Some X4 viruses are also capable of replication in macrophages, indicating that cellular tropism is partially independent of co-receptor preference. Preliminary data obtained with a small number of transmitted/founder viruses indicate inefficient macrophage infection, whereas isolates from later in disease are more frequently tropic for macrophages. Thus tropism may evolve over time, and more macrophage tropic viruses may be implicated in the pathogenesis of advanced HIV-1 infection. Compartmentalization of macrophage-tropic brain-derived envelope glycoproteins (Envs), and non-macrophage tropic non-neural tissue-derived Envs points to adaptation of HIV-1 quasi-species in distinct tissue microenvironments. Mutations within and adjacent to the Env-CD4 binding site have been identified that determine macrophage tropism at the entry level, but post-entry molecular determinants of macrophage replication capacity involving HIV-1 accessory proteins need further definition.
doi:10.3390/v3112255
PMCID: PMC3230851  PMID: 22163344
macrophage; monocyte; transmitted/founder virus; tropism; HIV-1; evolution
14.  Impact on Malaria Parasite Multiplication Rates in Infected Volunteers of the Protein-in-Adjuvant Vaccine AMA1-C1/Alhydrogel+CPG 7909 
PLoS ONE  2011;6(7):e22271.
Background
Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria.
Methods
In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes.
Results
A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson r = −0.93 [95% CI: −1.0, −0.27] P = 0.02) and AMA1 antibody titres in the vaccine group (Pearson r = −0.93 [95% CI: −0.99, −0.25] P = 0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5–9], control group median 9 days [range 7–9]).
Conclusions
Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers.
Trial Registration
ClinicalTrials.gov [NCT00984763]
doi:10.1371/journal.pone.0022271
PMCID: PMC3142129  PMID: 21799809
15.  Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation 
Nature Communications  2013;4:2836.
Induction of antigen-specific CD8+ T cells offers the prospect of immunization against many infectious diseases, but no subunit vaccine has induced CD8+ T cells that correlate with efficacy in humans. Here we demonstrate that a replication-deficient chimpanzee adenovirus vector followed by a modified vaccinia virus Ankara booster induces exceptionally high frequency T-cell responses (median >2400 SFC/106 peripheral blood mononuclear cells) to the liver-stage Plasmodium falciparum malaria antigen ME-TRAP. It induces sterile protective efficacy against heterologous strain sporozoites in three vaccinees (3/14, 21%), and delays time to patency through substantial reduction of liver-stage parasite burden in five more (5/14, 36%), P=0.008 compared with controls. The frequency of monofunctional interferon-γ-producing CD8+ T cells, but not antibodies, correlates with sterile protection and delay in time to patency (Pcorrected=0.005). Vaccine-induced CD8+ T cells provide protection against human malaria, suggesting that a major limitation of previous vaccination approaches has been the insufficient magnitude of induced T cells.
Induction of protective immunity mediated by CD8+ T cells has been a long sought goal in vaccinology. Here, Ewer et al. report induction of protective efficacy against Plasmodium falciparum malaria in a phase IIa prime-boost vaccine trial where efficacy correlates strongly with induced CD8 T-cell responses.
doi:10.1038/ncomms3836
PMCID: PMC3868203  PMID: 24284865

Results 1-15 (15)