PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Prevalence of bovine genital campylobacteriosis and trichomonosis of bulls in northern Nigeria 
Background
A survey was conducted to determine the prevalence of campylobacteriosis and trichomonosis, and their concurrence with brucellosis, in cattle in three states of northern Nigeria.
Methods
A total of 602 preputial samples was collected from bulls in 250 herds and tested using culture and identification. Various indigenous and exotic breeds were studied and four major management systems were encountered. Age of the cattle was estimated using dentition, farm records or cornual rings.
Results
The estimated true animal-level prevalence of Campylobacter fetus infection was 16.4% (95% CI: 13.0-20.7), of which 18.5% was C. f. fetus and 81.5% was C. f. venerealis. Of the latter, 92% were C. f. venerealis biovar intermedius strains. Animal-level prevalences in Adamawa, Kano and Kaduna states were 31.8%, 11.6% and 8.3% respectively, and were highest in bulls >7 years old (33.4%) and in the Gudali breed (28.8%). Of the 250 herds, 78 (25.5%, 95% CI: 19.4-32.7) had at least one infected bull, and herd prevalence was highest in the pastoral management system (43.5%). After adjustment for confounding using multivariable analysis, the odds of C. fetus infection were highest in Adamawa state (P < 0.01), in the pastoral management system (P < 0.01), and in bulls >7 years old (P = 0.01), and tended to be higher in Bos taurus breeds (P = 0.06). There was a strong positive association between the presence of campylobacteriosis and brucellosis (P < 0.01), both within bulls (OR = 8.3) and within herds (OR = 16.0). Trichomonosis was not detected in any herds.
Conclusion
Bovine genital campylobacteriosis is prevalent particularly in the pastoral management system in northern Nigeria, with C. f. venerealis biovar intermedius as the major aetiology. There was a strong positive correlation between the occurrence of campylobacteriosis and brucellosis. No evidence of trichomonosis was found in herds in this study.
doi:10.1186/1751-0147-55-56
PMCID: PMC3751741  PMID: 23927676
Bovine; Brucellosis; Campylobacteriosis; Nigeria; Preputial samples; Trichomonosis
2.  Transmission Potential of Rift Valley Fever Virus over the Course of the 2010 Epidemic in South Africa 
Emerging Infectious Diseases  2013;19(6):916-924.
A Rift Valley fever (RVF) epidemic affecting animals on domestic livestock farms was reported in South Africa during January–August 2010. The first cases occurred after heavy rainfall, and the virus subsequently spread countrywide. To determine the possible effect of environmental conditions and vaccination on RVF virus transmissibility, we estimated the effective reproduction number (Re) for the virus over the course of the epidemic by extending the Wallinga and Teunis algorithm with spatial information. Re reached its highest value in mid-February and fell below unity around mid-March, when vaccination coverage was 7.5%–45.7% and vector-suitable environmental conditions were maintained. The epidemic fade-out likely resulted first from the immunization of animals following natural infection or vaccination. The decline in vector-suitable environmental conditions from April onwards and further vaccination helped maintain Re below unity. Increased availability of vaccine use data would enable evaluation of the effect of RVF vaccination campaigns.
doi:10.3201/eid1906.121641
PMCID: PMC3713830  PMID: 23735606
Rift Valley fever; South Africa; epidemic; likelihood functions; viruses; Rift Valley fever virus; zoonoses; transmission
3.  Serological Evidence of Rift Valley Fever Virus Circulation in Sheep and Goats in Zambézia Province, Mozambique 
Rift Valley fever (RVF) is endemic in most parts of Africa and has also been reported to occur in the Arabian Peninsula. It is responsible for significant morbidity and mortality, particularly in livestock, but also in humans. During the last two decades several outbreaks of RVF have been reported in countries in Southern Africa. In contrast to other countries, no clinical disease has been reported in Mozambique during this period. In a serological study conducted in 2007 in five districts of Zambézia Province, Mozambique, of a total of 654 small ruminants sampled (277 sheep and 377 goats), 35.8% of sheep sera and 21.2% of goat sera were positive for RVF virus (RVFV) antibodies in a virus neutralization test (VN) and in an IgG enzyme-linked immunosorbent assay (ELISA). In 2010, a cross-sectional survey was conducted in 313 sheep and 449 goats in two districts of the same province. This study revealed an overall seropositivity rate of 9.2% in sheep and 11.6% in goat and an increased likelihood of being seropositive in older animals (OR = 7.3; p<0.001) using an IgG ELISA. 29 out of 240 animals assessed for RVF specific IgM by ELISA were positive, suggesting recent exposure to RVFV. However, a longitudinal study carried out between September 2010 and April 2011 in a cohort of 125 of these animals (74 sheep and 51 goats) failed to demonstrate seroconversion. The results of the study indicate that RVFV circulates sub-clinically in domestic small ruminants in Zambézia Province.
Author Summary
Rift Valley fever (RVF) is a mosquito-borne disease that results in severe negative impact on human and animal health and the economy. Outbreaks of RVF occur sporadically when heavy rains favour the breeding and emergence of mosquito vectors of the virus. Rift Valley fever has been reported in many African countries and in the Arabian Peninsula; however, in Mozambique there are very few reports of the occurrence of the disease. We conducted a serological study in Zambézia Province, central Mozambique, for the detection of RVFV-specific antibodies in sheep and goats. This study allowed us to gather valuable information on the extent of RVFV infection in animals. Our investigations showed that RVFV-specific antibodies are continuously present in at least a low percentage of sheep and goats, which strongly suggests the circulation of RVFV during inter-epidemic periods without the manifestation of the typical clinical signs. These findings raise the questions of how the virus is maintained and what are the risk factors involved in the maintenance of the virus during the inter-epidemic periods.
doi:10.1371/journal.pntd.0002065
PMCID: PMC3585041  PMID: 23469300
4.  Seroprevalence and risk factors for Toxoplasma gondii in sheep in Grosseto district, Tuscany, Italy 
Background
Serum samples from 630 milk sheep, in 33 dairy flocks representative of the southern area of the Tuscany region, were tested for the presence of antibodies to Toxoplasma gondii using an indirect immunofluorescence antibody test (IFAT). Questionnaires exploring the management system were completed by the veterinarian in charge of the flocks.
Results
At least one seropositive animal was found in 32 of the 33 flocks tested (97.0%; 95% CI: 84.2%, 99.9%). In the positive flocks, median seroprevalence was 29.4% (interquartile range: 15.9%-46.1%). Overall animal-level seroprevalence, adjusted for sampling weights and test sensitivity and specificity, was 33.3% (95% CI: 24.8%, 42.7%). In a multivariable negative binomial regression model the number of seropositive animals in a flock decreased with increasing flock size (for >400 vs. <300 animals: count ratio (CR) = 0.62; 95% CI: 0.41, 0.95; P = 0.028) and was greater on farms where stray cats had access to animals’ water (CR = 1.54; 95% CI: 1.05, 2.26; P = 0.027).
Conclusions
Small flock size and access of cats to water are potential risk factors for Toxoplasma infection in sheep in the Grosseto district in Tuscany, Italy. Sheep could be an important source of T. gondii infection in humans, since we estimate that between 25% and 43% of sheep in the district were seropositive. Toxoplasmosis is also likely to be an important cause of abortion in sheep in the district. Control and prophylactic measures must be adopted to improve the rearing system and the implementation of health promoting programmes in a joint effort between sheep farmers, farmers’ associations and veterinarians to inform about the means of transmission of the infection and for a better understanding of the disease.
doi:10.1186/1746-6148-9-25
PMCID: PMC3577446  PMID: 23391299
Toxoplasmosis; Sheep; Prevalence; Intra-cluster correlation coefficient; IFAT; Risk factors
5.  Exploratory Space-Time Analyses of Rift Valley Fever in South Africa in 2008–2011 
Background
Rift Valley fever (RVF) is a zoonotic arbovirosis for which the primary hosts are domestic livestock (cattle, sheep and goats). RVF was first described in South Africa in 1950–1951. Mechanisms for short and long distance transmission have been hypothesised, but there is little supporting evidence. Here we describe RVF occurrence and spatial distribution in South Africa in 2008–11, and investigate the presence of a contagious process in order to generate hypotheses on the different mechanisms of transmission.
Methodology/Principal Findings
A total of 658 cases were extracted from World Animal Health Information Database. Descriptive statistics, epidemic curves and maps were produced. The space-time K-function was used to test for evidence of space-time interaction. Five RVF outbreak waves (one in 2008, two in 2009, one in 2010 and one in 2011) of varying duration, location and size were reported. About 70% of cases (n = 471) occurred in 2010, when the epidemic was almost country-wide. No strong evidence of space-time interaction was found for 2008 or the second wave in 2009. In the first wave of 2009, a significant space-time interaction was detected for up to one month and over 40 km. In 2010 and 2011 a significant intense, short and localised space-time interaction (up to 3 days and 15 km) was detected, followed by one of lower intensity (up to 2 weeks and 35 to 90 km).
Conclusions/Significance
The description of the spatiotemporal patterns of RVF in South Africa between 2008 and 2011 supports the hypothesis that during an epidemic, disease spread may be supported by factors other than active vector dispersal. Limitations of under-reporting and space-time K-function properties are discussed. Further spatial analyses and data are required to explain factors and mechanisms driving RVF spread.
Author Summary
The factors explaining Rift Valley fever (RVF) spread in domestic livestock during an epidemic are attributed to short and long distance mechanisms, including active vector dispersal, passive vector dispersal and movements of infectious animals. However, because of data scarcity, quantifying and disentangling these mechanisms remains challenging. Here, we generate hypotheses on the possible mechanisms involved in RVF spread in South Africa between 2008 and 2011. We use descriptive statistics and estimate the space-time K-function to explore the presence of space-time interactions, being interpreted as an indicator of an underlying transmission process. Our results confirm the presence of an intense, short, initial transmission process that could be attributed to active vector dispersal; but also highlight the presence of another transmission mechanism of a lower intensity and over further distances that could be explained by the movements of infectious animals, passive vector dispersal or emergence of other foci. Further data collection and modelling tools are required to confirm these hypotheses.
doi:10.1371/journal.pntd.0001808
PMCID: PMC3429380  PMID: 22953020
6.  A large seroprevalence survey of brucellosis in cattle herds under diverse production systems in northern Nigeria 
Background
This study was carried out to investigate the status of brucellosis in cattle under various management systems in Adamawa, Kaduna and Kano states, northern Nigeria. Using multi-stage sampling, serum samples of 4,745 cattle from 271 herds were tested using the Rose-Bengal plate-agglutination test (RBPT) and positives were confirmed using a competitive enzyme-linked immunosorbent assay (c-ELISA).
Results
Prevalence estimates were calculated by adjusting for sampling weights and where possible for test sensitivity and specificity. Thirty-seven percent of all animals were RBPT positive, and after confirmation with c-ELISA the overall animal-level prevalence, adjusted for sampling weights, was 26.3% (95% CI, 22.1%-31.0%). Of the herds sampled, 210 (77.5%; 95% CI, 68.6%-84.5%) had at least one animal positive to both tests; this did not differ significantly between states (P = 0.538). Mean within-herd seroprevalence in positive herds was 30.2% (95% CI, 25.3%-35.1%) and ranged from 3.1% to 85.7%. Overall animal-level seroprevalences of 29.2% (95% CI, 22.5%-36.9%) n = 1,827, 23.3% (95% CI, 18.9%-28.3%) n = 1,870 and 26.7% (95% CI, 18.8%-36.7%) n = 1,048 were observed in Adamawa, Kaduna and Kano states, respectively (P = 0.496). A significantly higher seroprevalence was found in males (38.2%; 95% CI, 31.7%-45.2%) than in females (24.7%; 95% CI, 20.4%-29.5%) (P < 0.001) and in non-pregnant females (27.8%; 95% CI, 22.9%-33.5%) than in pregnant females (17.2%; 95% CI, 13.6%-21.5%) (P < 0.001). Seroprevalence increased with increasing age (P < 0.001), from 13.5% (95% CI, 8.9%-19.9%) in cattle <4 years to 35.0% (95% CI, 28.5%-42.3%) in cattle >7 years. Seroprevalence also varied between management systems (P < 0.001): pastoral systems 45.1% (95% CI, 38.6%-51.9%), zero-grazing systems 23.8% (95% CI, 6.8%-59.2%), agro-pastoral systems 22.0% (95% CI, 17.3%-27.8%), and commercial farms 15.9% (95% CI, 9.5%-25.5%). Seroprevalence did not differ significantly between breeds or lactation status.
Conclusion
This is the first large study to assess the prevalence of bovine brucellosis over a wide geographic area of northern Nigeria, in a variety of management systems and using accurate tests. The seroprevalence of brucellosis was high, and higher than results of previous studies in northern Nigeria. The pastoral management systems of the traditional Fulanis may be encouraging the dissemination of the disease. Public enlightenment of the farmers about the disease, vaccination and appropriate national control measures are recommended.
doi:10.1186/1746-6148-8-144
PMCID: PMC3482151  PMID: 22920578
Brucellosis; c-ELISA; Management systems; Northern Nigeria; RBPT; Seroprevalence

Results 1-6 (6)