PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  First molecular detection and characterization of herpesvirus and poxvirus in a Pacific walrus (Odobenus rosmarus divergens) 
BMC Veterinary Research  2014;10(1):968.
Background
Herpesvirus and poxvirus can infect a wide range of species: herpesvirus genetic material has been detected and amplified in five species of the superfamily Pinnipedia; poxvirus genetic material, in eight species of Pinnipedia. To date, however, genetic material of these viruses has not been detected in walrus (Odobenus rosmarus), another marine mammal of the Pinnipedia clade, even though anti-herpesvirus antibodies have been detected in these animals.
Case presentation
In February 2013, a 9-year-old healthy captive female Pacific walrus died unexpectedly at L’Oceanografic (Valencia, Spain). Herpesvirus was detected in pharyngeal tonsil tissue by PCR. Phylogenetic analysis revealed that the virus belongs to the subfamily Gammaherpesvirinae. Poxvirus was also detected by PCR in skin, pre-scapular and tracheobronchial lymph nodes and tonsils. Gross lesions were not detected in any tissue, but histopathological analyses of pharyngeal tonsils and lymph nodes revealed remarkable lymphoid depletion and lymphocytolysis. Similar histopathological lesions have been previously described in bovine calves infected with an alphaherpesvirus, and in northern elephant seals infected with a gammaherpesvirus that is closely related to the herpesvirus found in this case. Intracytoplasmic eosinophilic inclusion bodies, consistent with poxviral infection, were also observed in the epithelium of the tonsilar mucosa.
Conclusion
To our knowledge, this is the first molecular identification of herpesvirus and poxvirus in a walrus. Neither virus was likely to have contributed directly to the death of our animal.
doi:10.1186/s12917-014-0308-2
PMCID: PMC4299291  PMID: 25527906
Herpesvirus; Poxvirus; Walrus; Pinniped
2.  Modular framework to assess the risk of African swine fever virus entry into the European Union 
BMC Veterinary Research  2014;10:145.
Background
The recent occurrence and spread of African swine fever (ASF) in Eastern Europe is perceived as a serious risk for the pig industry in the European Union (EU). In order to estimate the potential risk of ASF virus (ASFV) entering the EU, several pathways of introduction were previously assessed separately. The present work aimed to integrate five of these assessments (legal imports of pigs, legal imports of products, illegal imports of products, fomites associated with transport and wild boar movements) into a modular tool that facilitates the visualization and comprehension of the relative risk of ASFV introduction into the EU by each analyzed pathway.
Results
The framework’s results indicate that 48% of EU countries are at relatively high risk (risk score 4 or 5 out of 5) for ASFV entry for at least one analyzed pathway. Four of these countries obtained the maximum risk score for one pathway: Bulgaria for legally imported products during the high risk period (HRP); Finland for wild boar; Slovenia and Sweden for legally imported pigs during the HRP. Distribution of risk considerably differed from one pathway to another; for some pathways, the risk was concentrated in a few countries (e.g., transport fomites), whereas other pathways incurred a high risk for 4 or 5 countries (legal pigs, illegal imports and wild boar).
Conclusions
The modular framework, developed to estimate the risk of ASFV entry into the EU, is available in a public domain, and is a transparent, easy-to-interpret tool that can be updated and adapted if required. The model’s results determine the EU countries at higher risk for each ASFV introduction route, and provide a useful basis to develop a global coordinated program to improve ASFV prevention in the EU.
doi:10.1186/1746-6148-10-145
PMCID: PMC4112856  PMID: 24992824
African swine fever; Emerging disease; Introduction; European Union; Pigs; Risk assessment; Semi-quantitative framework; Transboundary disease
3.  Detection and assessment of electrocution in endangered raptors by infrared thermography 
Background
Most European birds of prey find themselves in a poor state of conservation, with electrocution as one of the most frequent causes of unnatural death. Since early detection of electrocution is difficult, treatment is usually implemented late, which reduces its effectiveness. By considering that electrocution reduces tissue temperature, it may be detectable by thermography, which would allow a more rapid identification. Three individuals from three endangered raptor species [Spanish imperial eagle (Aquila adalberti), Lammergeier (Gypaetus barbatus) and Osprey (Pandion haliaetus)] were studied thermographically from the time they were admitted to a rehabilitation centre to the time their clinical cases were resolved.
Cases presentation
The three raptors presented lesions lacking thermal bilateral symmetry and were consistent with electrocution of feet, wings and eyes, visible by thermography before than clinically; lesions were well-defined and showed a lower temperature than the surrounding tissue. Some lesions evolved thermally and clinically until the appearance of normal tissue recovered, while others evolved and became necrotic. A histopathological analysis of a damaged finger amputated off a Lammergeier, and the necropsy and histopathology examination of an osprey, confirmed the electrocution diagnosis.
Conclusions
These results suggest that thermography is effective and useful for the objective and early detection and monitoring of electrocuted birds, and that it may prove especially useful for examining live animals that require no amputation or cannot be subjected to invasive histopathology.
doi:10.1186/1746-6148-9-149
PMCID: PMC3726331  PMID: 23880357
Thermography; Electrocution; Raptor; Bird of prey; Spanish imperial eagle; Lammergeier; Osprey
4.  Metagenomic Detection of Viral Pathogens in Spanish Honeybees: Co-Infection by Aphid Lethal Paralysis, Israel Acute Paralysis and Lake Sinai Viruses 
PLoS ONE  2013;8(2):e57459.
The situation in Europe concerning honeybees has in recent years become increasingly aggravated with steady decline in populations and/or catastrophic winter losses. This has largely been attributed to the occurrence of a variety of known and “unknown”, emerging novel diseases. Previous studies have demonstrated that colonies often can harbour more than one pathogen, making identification of etiological agents with classical methods difficult. By employing an unbiased metagenomic approach, which allows the detection of both unexpected and previously unknown infectious agents, the detection of three viruses, Aphid Lethal Paralysis Virus (ALPV), Israel Acute Paralysis Virus (IAPV), and Lake Sinai Virus (LSV), in honeybees from Spain is reported in this article. The existence of a subgroup of ALPV with the ability to infect bees was only recently reported and this is the first identification of such a strain in Europe. Similarly, LSV appear to be a still unclassified group of viruses with unclear impact on colony health and these viruses have not previously been identified outside of the United States. Furthermore, our study also reveals that these bees carried a plant virus, Turnip Ringspot Virus (TuRSV), potentially serving as important vector organisms. Taken together, these results demonstrate the new possibilities opened up by high-throughput sequencing and metagenomic analysis to study emerging new diseases in domestic and wild animal populations, including honeybees.
doi:10.1371/journal.pone.0057459
PMCID: PMC3583878  PMID: 23460860
5.  A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain 
Background
Bovine tuberculosis (bTB) is a chronic infectious disease mainly caused by Mycobacterium bovis. Although eradication is a priority for the European authorities, bTB remains active or even increasing in many countries, causing significant economic losses. The integral consideration of epidemiological factors is crucial to more cost-effectively allocate control measures. The aim of this study was to identify the nature and extent of the association between TB distribution and a list of potential risk factors regarding cattle, wild ungulates and environmental aspects in Ciudad Real, a Spanish province with one of the highest TB herd prevalences.
Results
We used a Bayesian mixed effects multivariable logistic regression model to predict TB occurrence in either domestic or wild mammals per municipality in 2007 by using information from the previous year. The municipal TB distribution and endemicity was clustered in the western part of the region and clearly overlapped with the explanatory variables identified in the final model: (1) incident cattle farms, (2) number of years of veterinary inspection of big game hunting events, (3) prevalence in wild boar, (4) number of sampled cattle, (5) persistent bTB-infected cattle farms, (6) prevalence in red deer, (7) proportion of beef farms, and (8) farms devoted to bullfighting cattle.
Conclusions
The combination of these eight variables in the final model highlights the importance of the persistence of the infection in the hosts, surveillance efforts and some cattle management choices in the circulation of M. bovis in the region. The spatial distribution of these variables, together with particular Mediterranean features that favour the wildlife-livestock interface may explain the M. bovis persistence in this region. Sanitary authorities should allocate efforts towards specific areas and epidemiological situations where the wildlife-livestock interface seems to critically hamper the definitive bTB eradication success.
doi:10.1186/1746-6148-8-148
PMCID: PMC3483254  PMID: 22931852
6.  Risk of African swine fever introduction into the European Union through transport-associated routes: returning trucks and waste from international ships and planes 
Background
The uncontrolled presence of African swine fever (ASF) in Russian Federation (RF) poses a serious risk to the whole European Union (EU) pig industry. Although trade of pigs and their products is banned since the official notification in June 2007, the potential introduction of ASF virus (ASFV) may occur by other routes, which are very frequent in ASF, and more difficult to control, such as contaminated waste or infected vehicles. This study was intended to estimate the risk of ASFV introduction into the EU through three types of transport routes: returning trucks, waste from international ships and waste from international planes, which will be referred here as transport-associated routes (TAR). Since no detailed and official information was available for these routes, a semi-quantitative model based on the weighted combination of risk factors was developed to estimate the risk of ASFV introduction by TAR. Relative weights for combination of different risk factors as well as validation of the model results were obtained by an expert opinion elicitation.
Results
Model results indicate that the relative risk for ASFV introduction through TAR in most of the EU countries (16) is low, although some countries, specifically Poland and Lithuania, concentrate high levels of risk, the returning trucks route being the analyzed TAR that currently poses the highest risk for ASFV introduction into the EU. The spatial distribution of the risk of ASFV introduction varies importantly between the analyzed introduction routes. Results also highlight the need to increase the awareness and precautions for ASF prevention, particularly ensuring truck disinfection, to minimize the potential risk of entrance into the EU.
Conclusions
This study presents the first assessment of ASF introduction into the EU through TAR. The innovative model developed here could be used in data scarce situations for estimating the relative risk associated to each EU country. This simple methodology provides a rapid and easy to interpret results on risk that may be used for a target and cost-effective allocation of resources to prevent disease introduction.
doi:10.1186/1746-6148-8-149
PMCID: PMC3485109  PMID: 22935221
African swine fever; Risk assessment; Transport; Trucks; Waste disposal
7.  Characterization of the Immune Response Induced by a Commercially Available Inactivated Bluetongue Virus Serotype 1 Vaccine in Sheep 
The Scientific World Journal  2012;2012:147158.
The protective immune response generated by a commercial monovalent inactivated vaccine against bluetongue virus serotype 1 (BTV1) was studied. Five sheep were vaccinated, boost-vaccinated, and then challenged against BTV1 ALG/2006. RT-PCR did not detect viremia at any time during the experiment. Except a temperature increase observed after the initial and boost vaccinations, no clinical signs or lesions were observed. A specific and protective antibody response checked by ELISA was induced after vaccination and boost vaccination. This specific antibody response was associated with a significant increase in B lymphocytes confirmed by flow cytometry, while significant increases were not observed in T lymphocyte subpopulations (CD4+, CD8+, and WC1+), CD25+ regulatory cells, or CD14+ monocytes. After challenge with BTV1, the antibody response was much higher than during the boost vaccination period, and it was associated with a significant increase in B lymphocytes, CD14+ monocytes, CD25+ regulatory cells, and CD8+ cytotoxic T lymphocytes.
doi:10.1100/2012/147158
PMCID: PMC3349316  PMID: 22619592
8.  Characterization of Protection Afforded by a Bivalent Virus-Like Particle Vaccine against Bluetongue Virus Serotypes 1 and 4 in Sheep 
PLoS ONE  2011;6(10):e26666.
Background
Bluetongue virus (BTV) is an economically important, arthropod borne, emerging pathogen in Europe, causing disease mainly in sheep and cattle. Routine vaccination for bluetongue would require the ability to distinguish between vaccinated and infected individuals (DIVA). Current vaccines are effective but are not DIVA. Virus-like particles (VLPs) are highly immunogenic structural mimics of virus particles, that only contain a subset of the proteins present in a natural infection. VLPs therefore offer the potential for the development of DIVA compatible bluetongue vaccines.
Methodology/Principal Findings
Merino sheep were vaccinated with either monovalent BTV-1 VLPs or a bivalent mixture of BTV-1 VLPs and BTV-4 VLPs, and challenged with virulent BTV-1 or BTV-4. Animals were monitored for clinical signs, antibody responses, and viral RNA. 19/20 animals vaccinated with BTV-1 VLPs either alone or in combination with BTV-4 VLPs developed neutralizing antibodies to BTV-1, and group specific antibodies to BTV VP7. The one animal that showed no detectable neutralizing antibodies, or group specific antibodies, had detectable viral RNA following challenge but did not display any clinical signs on challenge with virulent BTV-1. In contrast, all control animals' demonstrated classical clinical signs for bluetongue on challenge with the same virus. Six animals were vaccinated with bivalent vaccine and challenged with virulent BTV-4, two of these animals had detectable viral levels of viral RNA, and one of these showed clinical signs consistent with BTV infection and died.
Conclusions
There is good evidence that BTV-1 VLPs delivered as monovalent or bivalent immunogen protect from bluetongue disease on challenge with virulent BTV-1. However, it is possible that there is some interference in protective response for BTV-4 in the bivalent BTV-1 and BTV-4 VLP vaccine. This raises the question of whether all combinations of bivalent BTV vaccines are possible, or if immunodominance of particular serotypes could interfere with vaccine efficacy.
doi:10.1371/journal.pone.0026666
PMCID: PMC3202233  PMID: 22046324

Results 1-8 (8)