Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Mapping and Exome Sequencing Identifies a Mutation in the IARS Gene as the Cause of Hereditary Perinatal Weak Calf Syndrome 
PLoS ONE  2013;8(5):e64036.
We identified an IARS (isoleucyl-tRNA synthetase) c.235G>C (p.Val79Leu) substitution as the causative mutation for neonatal weakness with intrauterine growth retardation (perinatal weak calf syndrome). In Japanese Black cattle, the syndrome was frequently found in calves sired by Bull A. Hence, we employed homozygosity mapping and linkage analysis. In order to identify the perinatal weak calf syndrome locus in a 4.04-Mb region of BTA 8, we analysed a paternal half-sibling family with a BovineSNP50 BeadChip and microsatellites. In this critical region, we performed exome sequencing to identify a causative mutation. Three variants were detected as possible candidates for causative mutations that were predicted to disrupt the protein function, including a G>C (p.Val79Leu) mutation in IARS c.235. The IARS c.235G>C mutation was not a homozygous risk allele in the 36 healthy offspring of Bull A. Moreover, the IARS Val79 residue and its flanking regions were evolutionarily and highly conserved. The IARS mutant (Leu79) had decreased aminoacylation activity. Additionally, the homozygous mutation was not found in any of 1526 healthy cattle. Therefore, we concluded that the IARS c.235G>C mutation was the cause of hereditary perinatal weak calf syndrome.
PMCID: PMC3660308  PMID: 23700453
2.  Variants in the 3' UTR of General Transcription Factor IIF, polypeptide 2 affect female calving efficiency in Japanese Black cattle 
BMC Genetics  2013;14:41.
Calving efficiency can be described as the measure of a cow’s ability to produce viable offspring within a specific period of time. This trait is crucial in beef cattle because calves are necessary both for the production of beef and for heifer replacements. Recently, the number of calves produced at 4 years of age (NCP4) has been used to evaluate the calving efficiency of Japanese Black cattle. To identify variants associated with calving efficiency in Japanese Black cattle, we conducted a genome-wide association study (GWAS) using 688 animals with extreme NCP4 values selected from 15,225 animals.
We identified genetic variants on bovine chromosome 12 (BTA12) that were associated with NCP4. The General Transcription Factor IIF, polypeptide 2 (GTF2F2), located in the 132 kbp-associated region, proved to be in strong linkage disequilibrium. We found 15 associated variants in the promoter and the 3' UTR regions. Consistent with this finding, transcripts of GTF2F2 derived from the haplotype (Q) with the increased number of calves were 1.33-fold more abundant than q-derived transcripts. Furthermore, luciferase assays revealed that the activity of the 3' UTR, a region that includes nine SNPs, was higher in constructs with the Q haplotype than in those with the q haplotype by approximately 1.35-fold. In contrast, the activity of the promoter region did not differ between haplotypes. The association was replicated in an independent sample of 827 animals that were randomly selected from the remainder of the cohort from the same farms used in the GWAS. In the replicated population, the frequency of the Q haplotype is 0.313, and this haplotype accounts for 2.69% of the total phenotypic variance. The effect of the Q to q haplotype substitution on NCP4 was 0.054 calves. These findings suggest that variants in the 3' UTR of GTF2F2 affect the level of GTF2F2 mRNA, which is associated with calving efficiency.
This GWAS has identified variants in the 3’ UTR of GTF2F2 that were associated with the NCP4 of Japanese Black cattle, and this association was validated in an independent sample. The Q haplotype will be immediately useful in improving the calving efficiency of Japanese Black cattle.
PMCID: PMC3656791  PMID: 23663537
Calving efficiency; Number of calves produced at 4 years of age (NCP4); Genome-wide association study; General Transcription Factor IIF, polypeptide 2 (GTF2F2); Beef cattle
3.  BLV-CoCoMo-qPCR: a useful tool for evaluating bovine leukemia virus infection status 
Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide, imposing a severe economic impact on the dairy cattle industry. Recently, we developed a new quantitative real-time polymerase chain reaction (PCR) method using Coordination of Common Motifs (CoCoMo) primers to measure the proviral load of known and novel BLV variants in BLV-infected animals. Indeed, the assay was highly effective in detecting BLV in cattle from a range of international locations. This assay enabled us to demonstrate that proviral load correlates not only with BLV infection capacity as assessed by syncytium formation, but also with BLV disease progression. In this study, we compared the sensitivity of our BLV-CoCoMo-qPCR method for detecting BLV proviruses with the sensitivities of two real-time PCR systems, and also determined the differences of proviral load with serotests.
BLV-CoCoMo-qPCR was found to be highly sensitive when compared with the real-time PCR-based TaqMan MGB assay developed by Lew et al. and the commercial TaKaRa cycleave PCR system. The BLV copy number determined by BLV-CoCoMo-qPCR was only partially correlated with the positive rate for anti-BLV antibody as determined by the enzyme-linked immunosorbent assay, passive hemagglutination reaction, or agar gel immunodiffusion. This result indicates that, although serotests are widely used for the diagnosis of BLV infection, it is difficult to detect BLV infection with confidence by using serological tests alone. Two cattle were experimentally infected with BLV. The kinetics of the provirus did not precisely correlate with the change in anti-BLV antibody production. Moreover, both reactions were different in cattle that carried different bovine leukocyte antigen (BoLA)-DRB3 genotypes.
Our results suggest that the quantitative measurement of proviral load by BLV-CoCoMo-qPCR is useful tool for evaluating the progression of BLV-induced disease. BLV-CoCoMo-qPCR allows us to monitor the spread of BLV infection in different viewpoint compared with classical serotest.
PMCID: PMC3489618  PMID: 22995575
Bovine leukemia virus; Real-time PCR; Proviral load; Serological test; Experimental infection

Results 1-4 (4)