Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Surveys on Coxiella burnetii infections in Swedish cattle, sheep, goats and moose 
Q fever is a zoonotic disease caused by the bacterium Coxiella burnetii. Prevalence data in ruminant species are important to support risk assessments regarding public and animal health. The aim was to investigate the presence of or exposure to C. burnetii in cattle, sheep, goats and moose, and to compare two enzyme-linked immunosorbent assays (ELISAs). National surveys of antibodies against C. burnetii were performed for dairy cattle (n=1537), dairy goats (n=58) and sheep (n=518). Bovine samples consisted of bulk milk, caprine of pooled milk, and ovine of pooled serum. Antibodies were investigated in moose samples (n=99) from three regions. A one-year regional cattle bulk milk survey was performed on the Isle of Gotland (n=119, four occasions). Cattle, sheep and goat samples were analysed with indirect ELISA and moose samples with complement fixation test. For the sheep, goat, and parts of the cattle survey, samples were run in parallel by ELISAs based on antigens from infected ruminants and ticks. Bulk milk samples from the regional cattle survey and vaginal swabs from a subset of the sheep herds (n=80) were analysed for the agent by polymerase chain reaction. Spatial clustering was investigated in the national cattle survey.
The prevalence of antibodies in dairy herds was 8.2% with large regional differences. High risk clusters were identified in the southern regions. The prevalence among dairy herds on the Isle of Gotland varied from 55.9% to 64.6% and 46.4% to 58.9.0% for antibodies and agent, respectively, overall agreement between agent and antibodies was 85.2%. The prevalence of antibodies in sheep was 0.6%, the agent was not detected the vaginal swabs. Antibodies were not detected in goats or moose, although parts of the moose samples were collected in an area with high prevalence in cattle. The overall agreement between the two ELISAs was 90.4%.
The prevalence of antibodies against C. burnetii in dairy cattle in Sweden shows large regional differences. The results suggest that C. burnetii is a rare pathogen among Swedish moose, dairy goat and sheep. ELISAs based on ruminant and tick antigen performed in a similar manner under Swedish conditions.
PMCID: PMC4112654  PMID: 25007979
Coxiella burnetii; Surveillance; Epidemiology; Cattle; Goat; Sheep; Moose; Cervids; Antibodies; Test evaluation
3.  Laboratory or Field Tests for Evaluating Firefighters' Work Capacity? 
PLoS ONE  2014;9(3):e91215.
Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = −0.81) and barbell shoulder press (rs = −0.77), for Pulling: IE shoulder extension (rs = −0.82) and bench press (rs = −0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = −0.83) and bench press (rs = −0.82), and for the Terrain work task: IE trunk flexion (rs = −0.58) and upright barbell row (rs = −0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity.
PMCID: PMC3948787  PMID: 24614596
4.  Field Tests for Evaluating the Aerobic Work Capacity of Firefighters 
PLoS ONE  2013;8(7):e68047.
Working as a firefighter is physically strenuous, and a high level of physical fitness increases a firefighter’s ability to cope with the physical stress of their profession. Direct measurements of aerobic capacity, however, are often complicated, time consuming, and expensive. The first aim of the present study was to evaluate the correlations between direct (laboratory) and indirect (field) aerobic capacity tests with common and physically demanding firefighting tasks. The second aim was to give recommendations as to which field tests may be the most useful for evaluating firefighters’ aerobic work capacity. A total of 38 subjects (26 men and 12 women) were included. Two aerobic capacity tests, six field tests, and seven firefighting tasks were performed. Lactate threshold and onset of blood lactate accumulation were found to be correlated to the performance of one work task (rs = −0.65 and −0.63, p<0.01, respectively). Absolute (mL·min−1) and relative (mL·kg−1·min−1) maximal aerobic capacity was correlated to all but one of the work tasks (rs = −0.79 to 0.55 and −0.74 to 0.47, p<0.01, respectively). Aerobic capacity is important for firefighters’ work performance, and we have concluded that the time to row 500 m, the time to run 3000 m relative to body weight (s·kg−1), and the percent of maximal heart rate achieved during treadmill walking are the most valid field tests for evaluating a firefighter’s aerobic work capacity.
PMCID: PMC3699487  PMID: 23844153
5.  Completeness of the disease recording systems for dairy cows in Denmark, Finland, Norway and Sweden with special reference to clinical mastitis 
In the Nordic countries Denmark, Finland, Norway and Sweden, the majority of dairy herds are covered by disease recording systems, in general based on veterinary registration of diagnoses and treatments. Disease data are submitted to the national cattle databases where they are combined with, e.g., production data at cow level, and used for breeding programmes, advisory work and herd health management. Previous studies have raised questions about the quality of the disease data. The main aim of this study was to examine the country-specific completeness of the disease data, regarding clinical mastitis (CM) diagnosis, in each of the national cattle databases. A second aim was to estimate country-specific CM incidence rates (IRs).
Over 4 months in 2008, farmers in the four Nordic countries recorded clinical diseases in their dairy cows. Their registrations were matched to registrations in the central cattle databases. The country-specific completeness of disease registrations was calculated as the proportion of farmer-recorded cases that could be found in the central database. The completeness (95% confidence interval) for veterinary-supervised cases of CM was 0.94 (0.92, 0.97), 0.56 (0.48, 0.64), 0.82 (0.75, 0.90) and 0.78 (0.70, 0.85) in Denmark, Finland, Norway and Sweden, respectively. The completeness of registration of all CM cases, which includes all cases noted by farmers, regardless of whether the cows were seen or treated by a veterinarian or not, was 0.90 (0.87, 0.93), 0.51 (0.43, 0.59), 0.75 (0.67, 0.83) and 0.67 (0.60, 0.75), respectively, in the same countries. The IRs, estimated by Poisson regression in cases per 100 cow-years, based on the farmers’ recordings, were 46.9 (41.7, 52.7), 38.6 (34.2, 43.5), 31.3 (27.2, 35.9) and 26.2 (23.2, 26.9), respectively, which was between 20% (DK) and 100% (FI) higher than the IRs based on recordings in the central cattle databases.
The completeness for veterinary-supervised cases of CM was considerably less than 100% in all four Nordic countries and differed between countries. Hence, the number of CM cases in dairy cows is underestimated. This has an impact on all areas where the disease data are used.
PMCID: PMC3489834  PMID: 22866606
Bovine mastitis; Disease recording; Completeness; Nordic; Database; Validation
6.  Can pre-collected register data be used to identify dairy herds with good cattle welfare? 
Acta Veterinaria Scandinavica  2011;53(Suppl 1):S8.
Pre-recorded register data from dairy herds are available in almost all Nordic countries. These databases can be used for research purposes, and one of the research areas is animal welfare. The aim of this study was to investigate if pre-recorded register data could be used to identify herds with good welfare, and to investigate if a combination of register data sets could be used to be able to more correctly distinguish between herds with good welfare and herds with welfare deficiencies.
As a first step, nine animal-based measurements on calves, young stock and cows in 55 randomly selected herds were performed on-farm as the basis for a classification of welfare at the herd level. The definition for being a case herd with “good welfare” was no score lying among the 10% worst in any of the nine welfare measurements. Twenty-eight of the 55 herds were cases according to this definition. As a second step, 65 potential welfare indicators, based on register data in a national dairy database, were identified by expert opinion. In the final step, the extent to which the suggested welfare indicators predicted farms’ as having good welfare according to the stated definition was assessed. Moreover, the effect of combining in sequence a previously developed model that identified herds with poor welfare with the present model identifying herds with good welfare was investigated.
The final set of welfare indicators used to identify herds with good animal welfare included two fertility measures, cow mortality, stillbirth rate, mastitis incidence and incidence of feed-related diseases (including gastrointestinal disturbances but excluding paralyses and cramps). This set had a test sensitivity of correctly classifying herds with no score lying among the 10% worst of the nine welfare measurements of 96 %. However, the specificity of the test was only 56% indicating difficulties for the test to correctly classifying herds with one or more scores lying among the 10% worst. Combining the previously developed model with the present model, improved the welfare classification.
This study shows that pre-collected register data may be used to give approval to dairy farms with “good welfare” and that combining different sets of register data can improve the classification of herd welfare.
PMCID: PMC3194127  PMID: 21999569
7.  Herd and cow characteristics affecting the odds of veterinary treatment for disease – a multilevel analysis 
Research has indicated that a number of different factors affect whether an animal receives treatment or not when diseased. The aim of this paper was to evaluate if herd or individual animal characteristics influence whether cattle receives veterinary treatment for disease, and thereby also introduce misclassification in the disease recording system.
The data consisted mainly of disease events reported by farmers during 2004. We modelled odds of receiving veterinary treatment when diseased, using two-level logistic regression models for cows and young animals (calves and heifers), respectively. Model parameters were estimated using three procedures, because these procedures have been shown, under some conditions, to produce biased estimates for multi-level models with binary outcomes.
Cows located in herds mainly consisting of Swedish Holstein cows had higher odds for veterinary treatment than cows in herds mainly consisting of Swedish Red cows. Cows with a disease event early in lactation had higher odds for treatment than when the event occurred later in lactation. There were also higher odds for veterinary treatment of events for cows in January and April than in July and October. The odds for veterinary treatment of events in young animals were higher if the farmer appeared to be good at keeping records. Having a disease event at the same date as another animal increased the odds for veterinary treatment for all events in young animals, and for lameness, metabolic, udder and other disorders, but not for peripartum disorders, in cows. There were also differences in the odds for veterinary treatment between disease complexes, both for cows and young animals.
The random effect of herd was significant in both models and accounted for 40–44% of the variation in the cow model and 30–46% in the young animal model.
We conclude that cow and herd characteristics influence the odds for veterinary treatment and that this might bias the results from studies using data from the cattle disease database based on veterinary practice records.
PMCID: PMC2736961  PMID: 19698112

Results 1-7 (7)