Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Pharmacokinetic analysis of topical tobramycin in equine tears by automated immunoassay 
Ophthalmic antibiotic therapy in large animals is often used empirically because of the lack of pharmacokinetics studies. The purpose of the study was to determine the pharmacokinetics of topical tobramycin 0.3% ophthalmic solution in the tears of normal horses using an automated immunoassay analysis.
The mean tobramycin concentrations in the tears at 5, 10, 15, 30 minutes and 1, 2, 4, 6 hours after administration were 759 (±414), 489 (±237), 346 (±227), 147 (±264), 27.6 (±28.4), 14.8 (±66.6), 6.7 (±18.6), and 23.4 (±73.4) mg/L. Mean tobramycin concentration was maintained above the MIC90 for commonly isolated bacteria for 68.5 min.
A single dose of topical tobramycin resulted in therapeutic concentrations of tobramycin in the tears for 1 h after administration. Therapeutic levels of tobramycin remained in equine tears 6 times longer than was reported in rabbit tears.
PMCID: PMC3489562  PMID: 22909398
Antibiotic; Equine; Pharmacokinetics; Tear; Tobramycin; Topical; Ophthalmology
2.  Evaluation of suitable reference genes for gene expression studies in bronchoalveolar lavage cells from horses with inflammatory airway disease 
The stability of reference genes has a tremendous effect on the results of relative quantification of genes expression by quantitative polymerase chain reaction. Equine Inflammatory Airway Disease (IAD) is a common condition often treated with corticosteroids. The diagnosis of IAD is based on clinical signs and bronchoalveolar lavage (BAL) fluid cytology. The aim of this study was to identify reference genes with the most stable mRNA expression in the BAL cells of horses with IAD irrespective of corticosteroids treatment.
The expression stability of seven candidate reference genes (B2M, HPRT, GAPDH, ACTB, UBB, RPL32, SDHA) was determined by qRT-PCR in BAL samples taken pre- and post- treatment with dexamethasone and fluticasone propionate for two weeks in 7 horses with IAD. Primers' efficiencies were calculated using LinRegPCR. NormFinder, GeNorm and qBasePlus softwares were used to rank the genes according to their stability. GeNorm was also used to determine both the ideal number and the best combination of reference genes. GAPDH was found to be the most stably expressed gene with the three softwares. GeNorm ranked B2M as the least stable gene. Based on the pair-wise variation cut-off value determined with GeNorm, the number of genes required for optimal normalization was four and included GAPDH, SDHA, HPRT and RPL32.
The geometric mean of GAPDH, HPRT, SDHA and RPL32 is recommended for accurate normalization of quantitative PCR data in BAL cells of horses with IAD treated with corticosteroids. If only one reference gene can be used, then GAPDH is recommended.
PMCID: PMC3039571  PMID: 21272375
3.  Myosin, Transgelin, and Myosin Light Chain Kinase 
Rationale: Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can also result from the expression of specific contractile proteins that promote faster cross-bridge cycling. This possibility has never been addressed in asthma.
Objectives: We tested the hypothesis that the expression of genes coding for SM contractile proteins is altered in asthmatic airways and contributes to their increased Vmax.
Methods: We quantified the expression of several genes that code for SM contractile proteins in mild allergic asthmatic and control human airway endobronchial biopsies. The function of these contractile proteins was tested using the in vitro motility assay.
Measurements and Main Results: We observed an increased expression of the fast myosin heavy chain isoform, transgelin, and myosin light chain kinase in patients with asthma. Immunohistochemistry demonstrated the expression of these genes at the protein level. To address the functional significance of this overexpression, we purified tracheal myosin from the hyperresponsive Fisher rats, which also overexpress the fast myosin heavy chain isoform as compared with the normoresponsive Lewis rats, and found a faster rate of actin filament propulsion. Conversely, transgelin did not alter the rate of actin filament propulsion.
Conclusions: Selective overexpression of airway smooth muscle genes in asthmatic airways leads to increased Vmax, thus contributing to the airway hyperresponsiveness observed in asthma.
PMCID: PMC2633053  PMID: 19011151
asthma; airway hyperresponsiveness; gene expression; smooth muscle; myosin

Results 1-3 (3)