Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution 
Developmental biology  2009;330(1):200-211.
This study addresses the role of sonic hedgehog (shh) in increasing oral pharyngeal constructive traits (jaws and taste buds) at the expense of eyes in the blind cavefish Astyanax mexicanus. In cavefish embryos, eye primordia degenerate under the influence of hyperactive Shh signaling. In concert, cavefish show amplified jaw size and taste bud numbers as part of an adaptive change in feeding behavior. To determine whether pleiotropic effects of hyperactive Shh signaling link these regressive and constructive traits, sonic hedgehog (shh) expression was compared during late development of the surface- (surface fish) and cave-dwelling forms of Astyanax. After an initial expansion along the midline of early embryos, shh was elevated in the oral pharyngeal region in cavefish and later was confined to taste buds. The results of shh inhibition and overexpression experiments indicate that Shh signaling has an important role in oral and taste bud development. Heat shock mediated activation of an injected shh transgene at specific times in development showed that taste bud amplification and eye degeneration are sensitive to shh overexpression during the same early developmental period, although taste buds are not formed until much later. Genetic crosses between cavefish and surface fish revealed an inverse relationship between eye size and jaw size/taste bud number, supporing the linkage between oral pharyngeal constructive traits and eye degeneration. The results suggest that hyperactive Shh signaling increases oral and taste bud amplification in cavefish and suggest that selection for constructive oral pharyngeal traits may be responsible for eye loss via pleiotropic function of the Shh signaling pathway.
PMCID: PMC3592972  PMID: 19285488
Sonic hedgehog; oral and jaw development; taste bud development; eye degeneration; pleiotropy
2.  Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish 
BMC Biology  2012;10:108.
How and why animals lose eyesight during adaptation to the dark and food-limited cave environment has puzzled biologists since the time of Darwin. More recently, several different adaptive hypotheses have been proposed to explain eye degeneration based on studies in the teleost Astyanax mexicanus, which consists of blind cave-dwelling (cavefish) and sighted surface-dwelling (surface fish) forms. One of these hypotheses is that eye regression is the result of indirect selection for constructive characters that are negatively linked to eye development through the pleiotropic effects of Sonic Hedgehog (SHH) signaling. However, subsequent genetic analyses suggested that other mechanisms also contribute to eye regression in Astyanax cavefish. Here, we introduce a new approach to this problem by investigating the phenotypic and genetic relationships between a suite of non-visual constructive traits and eye regression.
Using quantitative genetic analysis of crosses between surface fish, the Pachón cavefish population and their hybrid progeny, we show that the adaptive vibration attraction behavior (VAB) and its sensory receptors, superficial neuromasts (SN) specifically found within the cavefish eye orbit (EO), are genetically correlated with reduced eye size. The quantitative trait loci (QTL) for these three traits form two clusters of congruent or overlapping QTL on Astyanax linkage groups (LG) 2 and 17, but not at the shh locus on LG 13. Ablation of EO SN in cavefish demonstrated a major role for these sensory receptors in VAB expression. Furthermore, experimental induction of eye regression in surface fish via shh overexpression showed that the absence of eyes was insufficient to promote the appearance of VAB or EO SN.
We conclude that natural selection for the enhancement of VAB and EO SN indirectly promotes eye regression in the Pachón cavefish population through an antagonistic relationship involving genetic linkage or pleiotropy among the genetic factors underlying these traits. This study demonstrates a trade-off between the evolution of a non-visual sensory system and eye regression during the adaptive evolution of Astyanax to the cave environment.
PMCID: PMC3565949  PMID: 23270452
animal behavior; regressive evolution; constructive evolution; neuromast; hedgehog; tradeoff; quantitative trait locus; eye; QTL cluster; adaptation
3.  Clinical characteristics and risk factors for septic shock in patients receiving emergency drainage for acute pyelonephritis with upper urinary tract calculi 
BMC Urology  2012;12:4.
Acute pyelonephritis (APN) is a common complication of ureteral obstruction caused by urolithiasis, and it can be lethal if it progresses to septic shock. We investigated the clinical characteristics of patients undergoing emergency drainage and assessed risk factors for septic shock.
A retrospective study was performed of 98 patients (101 events) requiring emergency drainage at our urology department for obstructive APN associated with upper urinary tract calculi from January 2003 to January 2011. Clinical characteristics were summarized, and risk factors for septic shock were assessed by logistic regression analysis.
Objective evidence of sepsis was found in 64 (63.4%) events, and 21 events (20.8%) were categorized as septic shock. Ninety-six patients recovered, but 2 patients died of septic shock. Multivariate analysis revealed that age and the presence of paralysis were independent risk factors for septic shock.
APN associated with upper urinary tract calculi is a severe disease that should be treated with caution, particularly when risk factors are present.
PMCID: PMC3353222  PMID: 22413829
4.  The lens controls cell survival in the retina: evidence from the blind cavefish Astyanax 
Developmental biology  2007;311(2):512-523.
The lens influences retinal growth and differentiation during vertebrate eye development but the mechanisms are not understood. The role of the lens in retinal growth and development was studied in the teleost Astyanax mexicanus, which has eyed surface-dwelling (surface fish) and blind cave-dwelling (cavefish) forms. A lens and laminated retina initially develop in cavefish embryos, but the lens dies by apoptosis. The cavefish retina is subsequently disorganized, apoptotic cells appear, the photoreceptor layer degenerates, and retinal growth is arrested. We show here by PCNA, BrdU and TUNEL labeling that cell proliferation continues in the adult cavefish retina but the newly born cells are removed by apoptosis. Surface fish to cavefish lens transplantation, which restores retinal growth and rod cell differentiation, abolished apoptosis in the retina but not in the RPE. Surface fish lens deletion did not cause apoptosis in the surface fish retina or affect RPE differentiation. Neither lens transplantation in cavefish nor lens deletion in surface fish affected retinal cell proliferation. We conclude that the lens acts in concert with another optic component, possibly the RPE, to promote retinal cell survival. Accordingly, deficiency in both optic structures may lead to eye degeneration in cavefish.
PMCID: PMC2151927  PMID: 17936264
retina; lens; retinal pigment epithelium; eye growth; eye degeneration; apoptosis; cavefish
5.  Zebrafish Hsp70 is required for embryonic lens formation 
Cell Stress & Chaperones  2005;10(1):66-78.
Heat shock proteins (Hsps) were originally identified as proteins expressed after exposure of cells to environmental stress. Several Hsps were subsequently shown to play roles as molecular chaperones in normal intracellular protein folding and targeting events and to be expressed during discrete periods in the development of several embryonic tissues. However, only recently have studies begun to address the specific developmental consequences of inhibiting Hsp expression to determine whether these molecular chaperones are required for specific developmental events. We have previously shown that the heat-inducible zebrafish hsp70 gene is expressed during a distinct temporal window of embryonic lens formation at normal growth temperatures. In addition, a 1.5-kb fragment of the zebrafish hsp70 gene promoter is sufficient to direct expression of a gfp reporter gene to the lens, suggesting that the hsp70 gene is expressed as part of the normal lens development program. Here, we used microinjection of morpholino-modified antisense oligonucleotides (MOs) to reduce Hsp70 levels during zebrafish development and to show that Hsp70 is required for normal lens formation. Hsp70-MO–injected embryos exhibited a small-eye phenotype relative to wild-type and control-injected animals, with the phenotype discernable during the second day of development. Histological and immunological analysis revealed a small, underdeveloped lens. Numerous terminal deoxynucleotidyl transferase–mediated dUTP-fluoroscein nick-end labeling (TUNEL)–positive nuclei appeared in the lens of small-eye embryos after 48 hours postfertilization (hpf), whereas they were no longer apparent in untreated embryos by this age. Lenses transplanted from hsp70-MO–injected embryos into wild-type hosts failed to recover and retained the immature morphology characteristic of the small-eye phenotype, indicating that the lens phenotype is lens autonomous. Our data suggest that the lens defect in hsp70-MO–injected embryos is predominantly at the level of postmitotic lens fiber differentiation, a result supported by the appearance of mature lens organization in these embryos by 5 days postfertilization, once morpholino degradation or dilution has occurred.
PMCID: PMC1074573  PMID: 15832949
6.  Identification of Two myo-Inositol Transporter Genes of Bacillus subtilis 
Journal of Bacteriology  2002;184(4):983-991.
Among hundreds of mutants constructed systematically by the Japanese groups participating in the functional analysis of the Bacillus subtilis genome project, we found that a mutant with inactivation of iolT (ydjK) exhibited a growth defect on myo-inositol as the sole carbon source. The putative product of iolT exhibits significant similarity with many bacterial sugar transporters in the databases. In B. subtilis, the iolABCDEFGHIJ and iolRS operons are known to be involved in inositol utilization, and its transcription is regulated by the IolR repressor and induced by inositol. Among the iol genes, iolF was predicted to encode an inositol transporter. Inactivation of iolF alone did not cause such an obvious growth defect on inositol as the iolT inactivation, while simultaneous inactivation of the two genes led to a more severe defect than the single iolT inactivation. Determination of inositol uptake by the mutants revealed that iolT inactivation almost completely abolished uptake, but uptake by IolF itself was slightly detectable. These results, as well as the Km and Vmax values for the IolT and IolF inositol transporters, indicated that iolT and iolF encode major and minor inositol transporters, respectively. Northern and primer extension analyses of iolT transcription revealed that the gene is monocistronically transcribed from a promoter likely recognized by ςsgr;A RNA polymerase and negatively regulated by IolR as well. The interaction between IolR and the iolT promoter region was analyzed by means of gel retardation and DNase I footprinting experiments, it being suggested that the mode of interaction is quite similar to that found for the promoter regions of the iol divergon.
PMCID: PMC134797  PMID: 11807058

Results 1-6 (6)