Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Spectrin Repeat Containing Nuclear Envelope 1 and Forkhead Box Protein E1 Are Promising Markers for the Detection of Colorectal Cancer in Blood 
Identifying biomarkers in body fluids may improve the noninvasive detection of colorectal cancer. Previously, we identified N-Myc downstream-regulated gene 4 (NDRG4) and GATA binding protein 5 (GATA5) methylation as promising biomarkers for colorectal cancer in stool DNA. Here, we examined the utility of NDRG4, GATA5, and two additional markers [Forkhead box protein E1 (FOXE1) and spectrin repeat containing nuclear envelope 1 (SYNE1)] promoter methylation as biomarkers in plasma DNA. Quantitative methylation-specific PCR was performed on plasma DNA from 220 patients with colorectal cancer and 684 noncancer controls, divided in a training set and a test set. Receiver operating characteristic analysis was performed to measure the area under the curve of GATA5, NDRG4, SYNE1, and FOXE1 methylation. Functional assays were performed in SYNE1 and FOXE1 stably transfected cell lines. The sensitivity of NDRG4, GATA5, FOXE1, and SYNE1 methylation in all stages of colorectal cancer (154 cases, 444 controls) was 27% [95% confidence interval (CI), 20%–34%), 18% (95% CI, 12%–24%), 46% (95% CI, 38%– 54%), and 47% (95% CI, 39%–55%), with a specificity of 95% (95% CI, 93%–97%), 99% (95% CI, 98%–100%), 93% (95% CI, 91%–95%), and 96% (95% CI, 94%–98%), respectively. Combining SYNE1 and FOXE1, increased the sensitivity to 56% (95% CI, 48%–64%), while the specificity decreased to 90% (95% CI, 87%–93%) in the training set and to 58% sensitivity (95% CI, 46%–70%) and 91% specificity (95% CI, 80%–100%) in a test set (66 cases, 240 controls). SYNE1 overexpression showed no major differences in cell proliferation, migration, and invasion compared with controls. Overexpression of FOXE1 significantly decreased the number of colonies in SW480 and HCT116 cell lines. Overall, our data suggest that SYNE1 and FOXE1 are promising markers for colorectal cancer detection.
PMCID: PMC4316751  PMID: 25538088
2.  Novel Methylation Biomarker Panel for the Early Detection of Pancreatic Cancer 
Pancreatic cancer is the fourth leading cause of cancer deaths and there currently is no reliable modality for the early detection of this disease. Here we identify cancer-specific promoter DNA methylation of BNC1 and ADAMTS1 as a promising biomarker detection strategy meriting investigation in pancreatic cancer.
Experimental Design
We used a genome-wide pharmacologic transcriptome approach to identify novel cancer-specific DNA methylation alterations in pancreatic cancer cell lines. Of 8 promising genes, we focused our studies on BNC1 and ADAMTS1 for further downstream analysis including methylation and expression. We used a nanoparticle-enabled MOB (Methylation On Beads) technology to detect early stage pancreatic cancers by analyzing DNA methylation in patient serum.
We identified 2 novel genes, BNC1 (92%) and ADAMTS1, (68%) that showed a high frequency of methylation in pancreas cancers (n=143), up to 100% in PanIN-3 and 97% in Stage I invasive cancers. Using the nanoparticle-enabled MOB technology, these alterations could be detected in serum samples (n=42) from pancreas cancer patients, with a sensitivity for BNC1 of 79% (95%CI:66-91%) and for ADAMTS1 of 48% (95%CI:33-63%), while specificity was 89% for BNC1 (95%CI:76-100%) and 92% for ADAMTS1 (95%CI:82-100%). Overall sensitivity using both markers is 81% (95%CI:69-93%) and specificity is 85% (95%CI:71-99%).
Promoter DNA methylation of BNC1 and ADAMTS1 are potential biomarkers to detect early stage pancreatic cancers. Assaying the promoter methylation status of these genes in circulating DNA from serum is a promising strategy for early detection of pancreatic cancer and has the potential to improve mortality from this disease.
PMCID: PMC4310572  PMID: 24088737
DNA Methylation; Early detection biomarker; Pancreatic cancer; Cancer screening
3.  Reduced Rate of Repeated Prostate Biopsies Observed in ConfirmMDx Clinical Utility Field Study 
American Health & Drug Benefits  2014;7(3):129-134.
The diagnosis of prostate cancer is dependent on histologic confirmation in biopsy core tissues. The biopsy procedure is invasive, puts the patient at risk for complications, and is subject to significant sampling errors. An epigenetic test that uses methylation-specific polymerase chain reaction to determine the epigenetic status of the prostate cancer–associated genes GSTP1, APC, and RASSF1 has been clinically validated and is used in clinical practice to increase the negative predictive value in men with no history of prostate cancer compared with standard histopathology. Such information can help to avoid unnecessary repeat biopsies. The repeat biopsy rate may provide preliminary clinical utility evidence in relation to this assay's potential impact on the number of unnecessary repeat prostate biopsies performed in US urology practices.
The purpose of this preliminary study was to quantify the number of repeat prostate biopsy procedures to demonstrate a low repeat biopsy rate for men with a history of negative histopathology who received a negative epigenetic assay result on testing of the residual prostate tissue.
In this recently completed field observation study, practicing urologists used the epigenetic test called ConfirmMDx for Prostate Cancer (MDxHealth, Inc, Irvine, CA) to evaluate cancer-negative men considered at risk for prostate cancer. This test has been previously validated in 2 blinded multicenter studies that showed the superior negative predictive value of the epigenetic test over standard histopathology for cancer detection in prostate biopsies. A total of 5 clinical urology practices that had ordered a minimum of 40 commercial epigenetic test requisitions for patients with previous, cancer-negative biopsies over the course of the previous 18 months were contacted to assess their interest to participate in the study. Select demographic and prostate-screening parameter information, as well as the incidence of repeat biopsy, specifically for patients with a negative test result, was collected and merged into 1 collective database. All men from each of the 5 sites who had negative assay results were included in the analysis.
A total of 138 patients were identified in these urology practices and were included in the analysis. The median age of the men was 63 years, and the current median serum prostate-specific antigen level was 4.7 ng/mL. Repeat biopsies had been performed in 6 of the 138 (4.3%) men with a negative epigenetic assay result, in whom no evidence of cancer was found on histopathology.
In this study, a low rate of repeat prostatic biopsies was observed in the group of men with previous histopathologically negative biopsies who were considered to be at risk for harboring cancer. The data suggest that patients managed using the ConfirmMDx for Prostate Cancer negative results had a low rate of repeat prostate biopsies. These results warrant a large, controlled, prospective study to further evaluate the clinical utility of the epigenetic test to lower the unnecessary repeat biopsy rate.
PMCID: PMC4070628  PMID: 24991397
4.  Frequent Inactivation of Cysteine Dioxygenase Type 1 Contributes to Survival of Breast Cancer Cells and Resistance to Anthracyclines 
Genome-wide DNA methylation analyses have identified hundreds of candidate DNA-hypermethylated genes in cancer. Comprehensive functional analyses provide an understanding of the biologic significance of this vast amount of DNA methylation data that may allow the determination of key epigenetic events associated with tumorigenesis.
Experimental Design
To study mechanisms of cysteine dioxygenase type 1 (CDO1) inactivation and its functional significance in breast cancer in a comprehensive manner, we screened for DNA methylation and gene mutations in primary breast cancers and analyzed growth, survival, and reactive oxygen species (ROS) production in breast cancer cells with restored CDO1 function in the context of anthracycline treatment.
DNA methylation-associated silencing of CDO1 in breast cancer is frequent (60%), cancer specific, and correlates with disease progression and outcome. CDO1 function can alternatively be silenced by repressive chromatin, and we describe protein-damaging missense mutations in 7% of tumors without DNA methylation. Restoration of CDO1 function in breast cancer cells increases levels of ROS and leads to reduced viability and growth, as well as sensitization to anthracycline treatment. Priming with 5-azacytidine of breast cancer cells with epigenetically silenced CDO1 resulted in restored expression and increased sensitivity to anthracyclines.
We report that silencing of CDO1 is a critical epigenetic event that contributes to the survival of oxidative-stressed breast cancer cells through increased detoxification of ROS and thus leads to the resistance to ROS-generating chemotherapeutics including anthracyclines. Our study shows the importance of CDO1 inactivation in breast cancer and its clinical potential as a biomarker and therapeutic target to overcome resistance to anthracyclines.
PMCID: PMC3985391  PMID: 23630167
5.  Transient Low Doses of DNA Demethylating Agents Exert Durable Anti-tumor Effects on Hematological and Epithelial Tumor Cells 
Cancer Cell  2012;21(3):430-446.
Reversal of promoter DNA hypermethylation and associated gene silencing is an attractive cancer therapy approach. The DNA methylation inhibitors decitabine and azacitidine are efficacious for hematological neoplasms at lower, less toxic, doses. Experimentally, high doses induce rapid DNA damage and cytotoxicity, which do not explain the prolonged response observed in patients. We show that transient exposure of cultured and primary leukemic and epithelial tumor cells to clinically-relevant nanomolar doses, without causing immediate cytotoxicity, produce an anti-tumor “memory” response, including inhibition of subpopulations of cancer stem-like cells. These effects are accompanied by sustained decreases in genome-wide promoter DNA methylation, gene re-expression, and anti-tumor changes in key cellular regulatory pathways. Low dose decitabine and azacitidine may have broad applicability for cancer management.
PMCID: PMC3312044  PMID: 22439938
6.  Oxidative Damage Targets Complexes Containing DNA Methyltransferases, SIRT1 and Polycomb Members to Promoter CpG Islands 
Cancer cell  2011;20(5):606-619.
Cancer cells simultaneously harbor global losses and gains in DNA methylation. We demonstrate that inducing cellular oxidative stress by treatment with hydrogen peroxide, recruits DNA methyltransferase 1 (DNMT1) to damaged chromatin. DNMT1 becomes part of a complex(es) containing DNMT3B and members of Polycomb Repressive Complex 4. Hydrogen peroxide treatment causes translocalization of these proteins from non-GC-rich to GC-rich areas. Key components are similarly enriched at gene promoters in an in vivo colitis model. While high expression genes enriched for members of the complex have histone mark and nascent transcription changes, CpG island-containing low expression genes gain promoter DNA methylation. Thus, oxidative damage induces formation and localization of a silencing complex that may explain cancer-specific aberrant DNA methylation and transcriptional silencing.
PMCID: PMC3220885  PMID: 22094255
7.  Sessile serrated adenomas and classical adenomas: an epigenetic perspective on premalignant neoplastic lesions of the gastrointestinal tract 
The diagnosis of sessile serrated adenomas (SSAs) is challenging, and there is a great deal of interobserver variability amongst pathologists in differentiating SSAs from hyperplastic polyps (HPPs). The aim of this study was (i) to assess the utility of epigenetic changes such as DNA methylation in differentiating SSAs from HPPs and (ii) to identify common methylation based molecular markers potentially useful for early detection of premalignant neoplastic lesions of gastrointestinal tract. A total of 97 primary patient adenoma samples were obtained from The Johns Hopkins Hospital pathology archive with IRB approval and HIPAA compliance. We analyzed the promoter associated CpG island methylation status of 17 genes using nested multiplex methylation specific PCR (MSP). Methylation of CDX2, hMLH1 and TLR2 was detected in SSAs and SSAs with dysplasia but not in HPPs. A subset of genes including EVL, GATAs (4 and 5), HIN-1, SFRPs (1, 2, 4 and 5), SOX17 and SYNE1 were methylated frequently in all premalignant gastrointestinal adenomas including tubular adenomas, villous adenomas, SSAs and SSAs with dysplasia but infrequently in non-premalignant polyps such as HPPs. Methylation of CDX2, hMLH1 and TLR2 may be of diagnostic utility in differentiating, histologically challenging cases of SSAs from HPPs. Genes such as EVL, GATAs, HIN-1, SFRPs, SOX17 and SYNE1, which are frequently methylated in all types of tested premalignant adenomas, may be useful as biomarkers in stool-based strategies for early detection of these adenomas and CRCs in future.
PMCID: PMC3206997  PMID: 21154739
gastrointestinal adenoma; methylation; sessile serrated; classical
8.  A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection 
BMC Urology  2012;12:16.
PSA-directed prostate cancer screening leads to a high rate of false positive identifications and an unnecessary biopsy burden. Epigenetic biomarkers have proven useful, exhibiting frequent and abundant inactivation of tumor suppressor genes through such mechanisms. An epigenetic, multiplex PCR test for prostate cancer diagnosis could provide physicians with better tools to help their patients. Biomarkers like GSTP1, APC and RASSF1 have demonstrated involvement with prostate cancer, with the latter two genes playing prominent roles in the field effect. The epigenetic states of these genes can be used to assess the likelihood of cancer presence or absence.
An initial test cohort of 30 prostate cancer-positive samples and 12 cancer-negative samples was used as basis for the development and optimization of an epigenetic multiplex assay based on the GSTP1, APC and RASSF1 genes, using methylation specific PCR (MSP). The effect of prostate needle core biopsy sample volume and age of formalin-fixed paraffin-embedded (FFPE) samples was evaluated on an independent follow-up cohort of 51 cancer-positive patients. Multiplexing affects copy number calculations in a consistent way per assay. Methylation ratios are therefore altered compared to the respective singleplex assays, but the correlation with patient outcome remains equivalent. In addition, tissue-biopsy samples as small as 20 μm can be used to detect methylation in a reliable manner. The age of FFPE-samples does have a negative impact on DNA quality and quantity.
The developed multiplex assay appears functionally similar to individual singleplex assays, with the benefit of lower tissue requirements, lower cost and decreased signal variation. This assay can be applied to small biopsy specimens, down to 20 microns, widening clinical applicability. Increasing the sample volume can compensate the loss of DNA quality and quantity in older samples.
PMCID: PMC3431995  PMID: 22672250
GSTP1; APC; RASSF1; Methylation; Epigenetics; Prostate cancer; Diagnosis; Multiplex; Singleplex; MSP
9.  Genomic and epigenomic integration identifies a prognostic signature in colon cancer 
The importance of genetic and epigenetic alterations maybe in their aggregate role in altering core pathways in tumorigenesis.
Experimental Design
Merging genome-wide genomic and epigenomic alterations, we identify key genes and pathways altered in colorectal cancers (CRC). DNA Methylation analysis was tested for predicting survival in CRC patients using Cox proportional hazard model.
We identified 29 low frequency mutated genes that are also inactivated by epigenetic mechanisms in CRC. Pathway analysis showed the extracellular matrix (ECM) remodeling pathway is silenced in CRC. 6 ECM pathway genes were tested for their prognostic potential in large CRC cohorts (n=777). DNA Methylation of IGFBP3 and EVL predicted for poor survival (IGFBP3: HR=2.58, 95%CI:1.37-4.87, p=0.004; EVL: HR=2.48, 95%CI:1.07-5.74, p=0.034) and simultaneous methylation of multiple genes predicted significantly worse survival (HR=8.61, 95%CI:2.16-34.36, p<0.001 for methylation of IGFBP3, EVL, CD109 and FLNC). DNA Methylation of IGFBP3 and EVL was validated as a prognostic marker in an independent contemporary matched cohort (IGFBP3 HR=2.06, 95% CI:1.04-4.09, p=0.038; EVL HR=2.23, 95%CI:1.00-5.0, p=0.05) and EVL DNA methylation remained significant in a secondary historical validation cohort (HR=1.41, 95%CI:1.05-1.89, p=0.022). Moreover, DNA methylation of selected ECM genes helps to stratify the high-risk Stage 2 colon cancers patients who would benefit from adjuvant chemotherapy (HR: 5.85, 95%CI:2.03-16.83, p=0.001 for simultaneous methylation of IGFBP3, EVL and CD109).
CRC that have silenced in ECM pathway components show worse survival suggesting that our finding provides novel prognostic biomarkers for CRC and reflects the high importance of integrative analyses linking genetic and epigenetic abnormalities with pathway disruption in cancer.
PMCID: PMC3077819  PMID: 21278247
DNA Methylation; Extracellular Matrix Pathway; Prognostic Biomarker; Colorectal cancer
10.  DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes 
Nucleic Acids Research  2012;40(10):4334-4346.
While DNA methyltransferase1 (DNMT1) is classically known for its functions as a maintenance methyltransferase enzyme, additional roles for DNMT1 in gene expression are not as clearly understood. Several groups have shown that deletion of the catalytic domain from DNMT1 does not abolish repressive activity of the protein against a reporter gene. In our studies, we examine the repressor function of catalytically inactive DNMT1 at endogenous genes. First, potential DNMT1 target genes were identified by searching for genes up-regulated in HCT116 colon cancer cells genetically disrupted for DNMT1 (DNMT1−/− hypomorph cells). Next, the requirement for DNMT1 activity for repression of these genes was assessed by stably restoring expression of wild-type or catalytically inactive DNMT1. Both wild-type and mutant proteins are able to occupy the promoters and repress the expression of a set of target genes, and induce, at these promoters, both the depletion of active histone marks and the recruitment of a H3K4 demethylase, KDM1A/LSD1. Together, our findings show that there are genes for which DNMT1 acts as a transcriptional repressor independent from its methyltransferase function and that this repressive function may invoke a role for a scaffolding function of the protein at target genes.
PMCID: PMC3378872  PMID: 22278882
11.  Aberrant Silencing of Cancer Related Genes by CpG Hypermethylation Occurs Independently of Their Spatial Organization in the Nucleus 
Cancer research  2010;70(20):8015-8024.
Aberrant promoter DNA-hypermethylation and repressive chromatin constitutes a frequent mechanism of gene inactivation in cancer. There is great interest in dissecting the mechanisms underlying this abnormal silencing. Studies have shown changes in nuclear organization of chromatin in tumor cells as well as association of aberrant methylation with long range silencing of neighboring genes. Further, certain tumors show a high incidence of promoter methylation termed as the CpG island methylator phenotype (CIMP). Here we have analyzed the role of nuclear chromatin architecture for genes in hypermethylated inactive versus non-methylated active states and its relation with long range silencing and CIMP. Using combined immunostaining for active/repressive chromatin marks and FISH in colorectal cancer cell lines we show that aberrant silencing of these genes occurs without requirement for their being positioned at heterochromatic domains. Importantly, hypermethylation, even when associated with long-range epigenetic silencing of neighboring genes, occurs independent of their euchromatic or heterochromatic location. Together, these results indicate that, in cancer, extensive changes around promoter chromatin of individual genes, or gene clusters, can potentially occur locally without preference for nuclear position and/or causing repositioning. These findings have important implications for understanding relationships between nuclear organization and gene expression patterns in cancer.
PMCID: PMC3031132  PMID: 20736368
DNA hypermethylation; nuclear organization; long range silencing; heterochromatin; colon cancer
12.  Cancer -related Epigenome Changes Associated with Reprogramming to Induced Pluripotent Stem Cells 
Cancer research  2010;70(19):7662-7673.
The ability to induce pluripotent stem cells from committed, somatic, human cells provides tremendous potential for regenerative medicine. However, there is a defined neoplastic potential inherent to such reprogramming that must be understood and may provide a model for understanding key events in tumorigenesis. Using genome wide assays we identify cancer-related epigenetic abnormalities that arise early during reprogramming and persist in induced pluripotent stem cell (iPS) clones. These include hundreds of abnormal gene silencing events, patterns of aberrant responses to epigenetic modifying drugs resembling those for cancer cells, and presence in iPS and partially reprogrammed cells of cancer-specific, gene promoter, DNA methylation alterations. Our findings suggest that by studying the process of induced reprogramming we may gain significant insight into the origins of epigenetic gene silencing associated with human tumorigenesis and add to means of assessing iPS for safety.
PMCID: PMC2980296  PMID: 20841480
reprogramming; induced pluripotent stem cells (iPS); embryonic stem cells (ESC); DNA methylation; chromatin; cancer
13.  Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, Polycomb binding and histone H3 lys4/lys27 trimethylation 
Cell stem cell  2008;2(2):160-169.
We report here genome-wide mapping of DNA methylation patterns at proximal promoter regions in mouse embryonic stem cells (mESCs). Most methylated genes are differentiation-associated and repressed in mESCs. By contrast, the unmethylated gene set includes many housekeeping and pluripotency genes. By cross- referencing methylation patterns to genome-wide mapping of histone H3 lysine (K) 4/27 trimethylation and binding of Oct4, Nanog and Polycomb proteins on gene promoters, we found that promoter DNA methylation is the only marker of this group present on approximately 30% of genes, many of which are silenced in mESCs. In demethylated mutant mESCs, we saw upregulation of a subset of X-linked genes and developmental genes that are methylated in wild-type mESCs, but lack either H3 K4 and K27 trimethylation or association with Polycomb, Oct4 or Nanog. Our data suggest that in mESCs promoter methylation represents a unique epigenetic program that complements other regulatory mechanisms to ensure appropriate gene expression.
PMCID: PMC3070208  PMID: 18371437
14.  Methylation of TFPI2 in Stool DNA: A Potential Novel Biomarker for the Detection of Colorectal Cancer 
Cancer research  2009;69(11):4691-4699.
We have used a gene expression array–based strategy to identify the methylation of tissue factor pathway inhibitor 2 (TFPI2), a potential tumor suppressor gene, as a frequent event in human colorectal cancers (CRC). TFPI2 belongs to the recently described group of embryonic cell Polycomb group (PcG)–marked genes that may be predisposed to aberrant DNA methylation in early stages of colorectal carcinogenesis. Aberrant methylation of TFPI2 was detected in almost all CRC adenomas (97%, n = 56) and stages I to IV CRCs (99%, n = 115). We further explored the potential of TFPI2 as a biomarker for the early detection of CRC using stool DNA–based assays in patients with nonmetastatic CRC and average-risk noncancer controls who were candidates for screening. TFPI2 methylation was detected in stool DNA from stage I to III CRC patients with a sensitivity of 76% to 89% and a specificity of 79% to 93%. Detection of TFPI2 methylation in stool DNA may act as a useful adjunct to the noninvasive strategies for screening of CRCs in the future.
PMCID: PMC3062162  PMID: 19435926
15.  Re-expression of CXCL14, a common target for epigenetic silencing in lung cancer, induces tumor necrosis 
Oncogene  2010;29(37):5159-5170.
Chemokines are important regulators of directional cell migration and tumor metastasis. A genome-wide transcriptome array designed to uncover novel genes silenced by methylation in lung cancer identified the CXC-subfamily of chemokines. Expression of eleven of the sixteen known human CXC-chemokines was increased in lung adenocarcinoma cell lines after treatment with 5-aza-2deoxycytidine (DAC). Tumor-specific methylation leading to silencing of CXCL5, 12 and 14 was found in over 75% of primary lung adenocarcinomas and DAC treatment restored expression of each silenced gene. Forced expression of CXCL14 in H23 cells where this gene is silenced by methylation increased cell death in vitro and dramatically reduced in vivo growth of lung tumor xenografts through necrosis of up to 90% of the tumor mass. CXCL14 re-expression had a profound effect on the genome altering the transcription of over 1,000 genes, including increased expression of 30 cell cycle inhibitor and pro-apoptosis genes. In addition, CXCL14 methylation in sputum from asymptomatic early stage lung cancer cases was associated with a 2.9-fold elevated risk for this disease compared to controls, substantiating its potential as a biomarker for early detection of lung cancer. Together these findings identify CXCL14 as an important tumor suppressor gene epigenetically silenced during lung carcinogenesis.
PMCID: PMC2940978  PMID: 20562917
CXCL14; Chemokines; lung cancer; DNA methylation; CXCL5; CXCL12
16.  Array-Based DNA Methylation Profiling for Breast Cancer Subtype Discrimination 
PLoS ONE  2010;5(9):e12616.
Abnormal DNA methylation is well established for breast cancer and contributes to its progression by silencing tumor suppressor genes. DNA methylation profiling platforms might provide an alternative approach to expression microarrays for accurate breast tumor subtyping. We sought to determine whether the distinction of the inflammatory breast cancer (IBC) phenotype from the non-IBC phenotype by transcriptomics could be sustained by methylomics.
Methodology/Principal Findings
We performed methylation profiling on a cohort of IBC (N = 19) and non-IBC (N = 43) samples using the Illumina Infinium Methylation Assay. These results were correlated with gene expression profiles. Methylation values allowed separation of breast tumor samples into high and low methylation groups. This separation was significantly related to DNMT3B mRNA levels. The high methylation group was enriched for breast tumor samples from patients with distant metastasis and poor prognosis, as predicted by the 70-gene prognostic signature. Furthermore, this tumor group tended to be enriched for IBC samples (54% vs. 24%) and samples with a high genomic grade index (67% vs. 38%). A set of 16 CpG loci (14 genes) correctly classified 97% of samples into the low or high methylation group. Differentially methylated genes appeared to be mainly related to focal adhesion, cytokine-cytokine receptor interactions, Wnt signaling pathway, chemokine signaling pathways and metabolic processes. Comparison of IBC with non-IBC led to the identification of only four differentially methylated genes (TJP3, MOGAT2, NTSR2 and AGT). A significant correlation between methylation values and gene expression was shown for 4,981 of 6,605 (75%) genes.
A subset of clinical samples of breast cancer was characterized by high methylation levels, which coincided with increased DNMT3B expression. Furthermore, an association was observed with molecular signatures indicative of poor patient prognosis. The results of the current study also suggest that aberrant DNA methylation is not the main force driving the molecular biology of IBC.
PMCID: PMC2935385  PMID: 20830311
17.  Polycomb CBX7 Promotes Initiation of Heritable Repression of Genes Frequently Silenced with Cancer Specific DNA Hypermethylation 
Cancer research  2009;69(15):6322-6330.
Epigenetic silencing of genes in association with aberrant promoter DNA hypermethylation has emerged as a significant mechanism in the development of human cancers. Such genes are also often targets of the Polycomb group repressive complexes in embryonic cells. The Polycomb repressive complex (PRC) 2 has been best studied in this regard. We now examine a link between PRC1 and cancer specific gene silencing. Here we show a novel and direct association between a constituent of the PRC1 complex, CBX7, with gene repression and promoter DNA hypermethylation of genes frequently silenced in cancer. CBX7 is able to complex with DNA methyltransferase enzymes leading us to explore a role for CBX7 in maintenance and initiation of gene silencing. Knockdown of CBX7 was unable to relieve suppression of deeply silenced genes in cancer cells, however, in embryonal carcinoma (EC) cells, CBX7 can initiate stable repression of genes that are frequently silenced in adult cancers. Furthermore, we are able to observe assembly of DNA methyltransferases at CBX7 target gene promoters. Sustained expression of CBX7 in EC cells confers a growth advantage and resistance to retinoic acid induced differentiation. In this setting, especially, there is increased promoter DNA hypermethylation for many genes by analysis of specific genes as well as through epigenomic studies. Our results allow us to propose a potential mechanism, through assembly of novel repressive complexes, by which the Pc component of PRC1 can promote the initiation of epigenetic changes involving abnormal DNA hypermethylation of genes frequently silenced in adult cancers.
PMCID: PMC2779702  PMID: 19602592
Polycomb; CBX7; DNA Hypermethylation; Gene Silencing
18.  Epigenetic Inactivation of the Canonical Wnt Antagonist SRY-Box Containing Gene 17 in Colorectal Cancer 
Cancer research  2008;68(8):2764.
SRY-box containing gene 17 (Sox17) is a member of the high mobility group (HMG) transcription factor superfamily, which plays critical roles in the regulation of development and stem/precursor cell function, at least partly through repression of Wnt pathway activity. Modulators controlling aberrant Wnt signaling activation are frequently disrupted in human cancers through complementary effects of epigenetic and genetic changes. Our recent global analysis of CpG island hypermethylation and gene expression in colorectal cancer (CRC) cell lines revealed that SOX17 gene silencing is associated with DNA hypermethylation of a CpG island in the promoter region. Here, we report that CpG island methylation-dependent silencing of SOX17 occurs in 100% of CRC cell lines, 86% of colorectal adenomas, 100% of stage I and II CRC, 89% of stage III CRC, 89% of primary esophageal cancer, and 50% of non–small cell lung cancer. Overexpression of SOX17 in HCT116 CRC cells inhibits colony growth and β-catenin/T-cell factor–dependent transcription. Structure-based deletion analysis further shows the presence of a Wnt signaling repression domain in the SOX17 HMG box. Together, our studies suggest that SOX17 is a negative modulator of canonical Wnt signaling, and that SOX17 silencing due to promoter hypermethylation is an early event during tumorigenesis and may contribute to aberrant activation of Wnt signaling in CRC.
PMCID: PMC2823123  PMID: 18413743
19.  Defining a Chromatin Pattern That Characterizes DNA Hypermethylated Genes in Colon Cancer Cells 
Cancer research  2008;68(14):5753-5759.
Epigenetic gene regulation is a key determinant of heritable gene expression patterns and is critical for normal cellular function. Dysregulation of epigenetic transcriptional control is a fundamental feature of cancer, particularly manifesting as increased promoter DNA methylation with associated aberrant gene silencing which plays a significant role in tumor progression. We now globally map key chromatin parameters for genes with promoter CpG island DNA hypermethylation in colon cancer cells by combining micraoarray gene expression analyses with ChIP on chip technology. We first show that the silent state of such genes universally correlates with a broad, low level distribution of the PcG mediated histone modification, methylation of lysine 27 of histone 3 (H3K27me) and a very low level of the active mark, H3K4me2. This chromatin pattern, and particularly H3K4me2 levels, crisply separates DNA hypermethylated genes from those where histone deacetylation is responsible for transcriptional silencing. Moreover, the chromatin pattern can markedly enhance identification of truly silent and DNA hypermethylated genes. We additionally find that when DNA hypermethylated genes are de-methylated and re-expressed, they adopt a “bivalent” chromatin pattern which is associated with the poised gene expression state of a large group of ES cell genes, and is characterized by an increase in levels of both the H3K27me3 and H3K4me2 marks. Our data have great relevance for the increasing interest in re-expression of DNA hypermethylated genes for the treatment of cancer.
PMCID: PMC2706536  PMID: 18632628
DNA methylation; chromatin; histone modifications; cancer; epigenetic
20.  Convergence of Mutation and Epigenetic Alterations Identifies Common Genes in Cancer That Predict for Poor Prognosis  
PLoS Medicine  2008;5(5):e114.
The identification and characterization of tumor suppressor genes has enhanced our understanding of the biology of cancer and enabled the development of new diagnostic and therapeutic modalities. Whereas in past decades, a handful of tumor suppressors have been slowly identified using techniques such as linkage analysis, large-scale sequencing of the cancer genome has enabled the rapid identification of a large number of genes that are mutated in cancer. However, determining which of these many genes play key roles in cancer development has proven challenging. Specifically, recent sequencing of human breast and colon cancers has revealed a large number of somatic gene mutations, but virtually all are heterozygous, occur at low frequency, and are tumor-type specific. We hypothesize that key tumor suppressor genes in cancer may be subject to mutation or hypermethylation.
Methods and Findings
Here, we show that combined genetic and epigenetic analysis of these genes reveals many with a higher putative tumor suppressor status than would otherwise be appreciated. At least 36 of the 189 genes newly recognized to be mutated are targets of promoter CpG island hypermethylation, often in both colon and breast cancer cell lines. Analyses of primary tumors show that 18 of these genes are hypermethylated strictly in primary cancers and often with an incidence that is much higher than for the mutations and which is not restricted to a single tumor-type. In the identical breast cancer cell lines in which the mutations were identified, hypermethylation is usually, but not always, mutually exclusive from genetic changes for a given tumor, and there is a high incidence of concomitant loss of expression. Sixteen out of 18 (89%) of these genes map to loci deleted in human cancers. Lastly, and most importantly, the reduced expression of a subset of these genes strongly correlates with poor clinical outcome.
Using an unbiased genome-wide approach, our analysis has enabled the discovery of a number of clinically significant genes targeted by multiple modes of inactivation in breast and colon cancer. Importantly, we demonstrate that a subset of these genes predict strongly for poor clinical outcome. Our data define a set of genes that are targeted by both genetic and epigenetic events, predict for clinical prognosis, and are likely fundamentally important for cancer initiation or progression.
Stephen Baylin and colleagues show that a combined genetic and epigenetic analysis of breast and colon cancers identifies a number of clinically significant genes targeted by multiple modes of inactivation.
Editors' Summary
Cancer is one of the developed world's biggest killers—over half a million Americans die of cancer each year, for instance. As a result, there is great interest in understanding the genetic and environmental causes of cancer in order to improve cancer prevention, diagnosis, and treatment.
Cancer begins when cells begin to multiply out of control. DNA is the sequence of coded instructions—genes—for how to build and maintain the body. Certain “tumor suppressor” genes, for instance, help to prevent cancer by preventing tumors from developing, but changes that alter the DNA code sequence—mutations—can profoundly affect how a gene works. Modern techniques of genetic analysis have identified genes such as tumor suppressors that, when mutated, are linked to the development of certain cancers.
Why Was This Study Done?
However, in recent years, it has become increasingly apparent that mutations are neither necessary nor sufficient to explain every case of cancer. This has led researchers to look at so-called epigenetic factors, which also alter how a gene works without altering its DNA sequence. An example of this is “methylation,” which prevents a gene from being expressed—deactivates it—by a chemical tag. Methylation of genes is part of the normal functioning of DNA, but abnormal methylation has been linked with cancer, aging, and some rare birth abnormalities.
Previous analysis of DNA from breast and colon cancer cells had revealed 189 “candidate cancer genes”—mutated genes that were linked to the development of breast and colon cancer. However, it was not clear how those mutations gave rise to cancer, and individual mutations were present in only 5% to 15% of specific tumors. The authors of this study wanted to know whether epigenetic factors such as methylation contributed to causing the cancers.
What Did the Researchers Do and Find?
The researchers first identified 56 of the 189 candidate cancer genes as likely tumor suppressors and then determined that 36 of these genes were methylated and deactivated, often in both breast and colon (laboratory-grown) cancer cells. In nearly all cases, the methylated genes were not active but could be reactivated by being demethylated. They further showed that, in normal colon and breast tissue samples, 18 of the 36 genes were unmethylated and functioned normally, but in cells taken from breast and colon cancer tumors they were methylated.
In contrast to the genetic mutations, the 18 genes were frequently methylated across a range of tumor types, and eight genes were methylated in both the breast and colon cancers. The authors found by reviewing the genetics and epigenetics of those 18 genes in breast and colon cancer that they were either mutated, methylated, or both. A literature review showed that at least six of the 18 genes were known to have tumor suppressor properties, and the authors determined that 16 were located in parts of DNA known to be missing from cells taken from a range of cancer tumors.
Finally, the researchers analyzed data on cancer cases to show that methylation of these 18 genes was correlated with reduced function of these genes in tumors and with a greater likelihood that a cancer will be terminal or spread to other parts of the body.
What Do These Findings Mean?
The researchers considered only the 189 candidate cancer genes found in one previous study and not other genes identified elsewhere. They also did not consider the biological effects of the individual mutations found in those genes. Despite this, they have demonstrated that methylation of specific genes is likely to play a role in the development of breast and/or colon cancer cells either together with mutations or independently, most likely by turning off their tumor suppression function.
More broadly, however, the study adds to the evidence that future analysis of the role of genes in cancer should include epigenetic as well as genetic factors. In addition, the authors have also shown that a number of these genes may be useful for predicting clinical outcomes for a range of tumor types.
Additional Information.
Please access these Web sites via the online version of this summary at
A December 2006 PLoS Medicine Perspective article reviews the value of examining methylation as a factor in common cancers and its use for early detection
The Web site of the American Cancer Society has a wealth of information and resources on a variety of cancers, including breast and colon cancer is a nonprofit organization providing information about breast cancer on the Web, including research news
Cancer Research UK provides information on cancer research
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins publishes background information on the authors' research on methylation, setting out its potential for earlier diagnosis and better treatment of cancer
PMCID: PMC2429944  PMID: 18507500
21.  PubMeth: a cancer methylation database combining text-mining and expert annotation 
Nucleic Acids Research  2007;36(Database issue):D842-D846.
Epigenetics, and more specifically DNA methylation is a fast evolving research area. In almost every cancer type, each month new publications confirm the differentiated regulation of specific genes due to methylation and mention the discovery of novel methylation markers. Therefore, it would be extremely useful to have an annotated, reviewed, sorted and summarized overview of all available data. PubMeth is a cancer methylation database that includes genes that are reported to be methylated in various cancer types. A query can be based either on genes (to check in which cancer types the genes are reported as being methylated) or on cancer types (which genes are reported to be methylated in the cancer (sub) types of interest). The database is freely accessible at
PubMeth is based on text-mining of Medline/PubMed abstracts, combined with manual reading and annotation of preselected abstracts. The text-mining approach results in increased speed and selectivity (as for instance many different aliases of a gene are searched at once), while the manual screening significantly raises the specificity and quality of the database. The summarized overview of the results is very useful in case more genes or cancer types are searched at the same time.
PMCID: PMC2238841  PMID: 17932060

Results 1-21 (21)