PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  DNA Methylation Biomarkers Predict Progression-Free and Overall Survival of Metastatic Renal Cell Cancer (mRCC) Treated with Antiangiogenic Therapies 
PLoS ONE  2014;9(3):e91440.
VEGF-targeted therapy increases both the progression-free (PFS) and overall survival (OS) of patients with metastasized renal cell cancer (mRCC). Identification of molecular phenotypes of RCC could improve risk-stratification and the prediction of the clinical disease course. We investigated whether gene-specific DNA hypermethylation can predict PFS and OS among patients undergoing anti-VEGF-based therapy. Primary tumor tissues from 18 patients receiving targeted therapy were examined retrospectively using quantitative methylation-specific PCR analysis of CST6, LAD1, hsa-miR-124-3, and hsa-miR-9-1 CpG islands. PFS and OS were analyzed for first-line and sequential antiangiogenic therapies using the log rank statistics. Sensitivity and specificity were determined for predicting first-line therapy failure. Hypermethylation of CST6 and LAD1 was associated with both a shortened PFS (log rank p = 0.009 and p = 0.004) and OS (p = 0.011 and p = 0.043). The median PFS observed for the high and low methylation groups of CST6 and LAD1 was 2.0 vs.11.4 months. LAD1 methylation had a specificity of 1.0 (95% CI 0.65–1.0) and a sensitivity of 0.73 (95% CI 0.43–0.90) for the prediction of first-line therapy. CST6 and LAD1 methylation are candidate epigenetic biomarkers showing unprecedented association with PFS and OS as well as specificity for the prediction of the response to therapy. DNA methylation markers should be considered for the prospective evaluation of larger patient cohorts in future studies.
doi:10.1371/journal.pone.0091440
PMCID: PMC3954691  PMID: 24633192
2.  Decreased GATA5 mRNA expression associates with CpG island methylation and shortened recurrence-free survival in clear cell renal cell carcinoma 
BMC Cancer  2014;14:101.
Background
GATA-5, a zinc-finger transcription factor and member of the GATA family proteins 1–6, is known to be involved in cellular differentiation. We recently found that tumor-specific hypermethylation of the GATA5 CpG island (CGI) occurs in renal cell carcinoma (RCC) and is associated with an adverse clinical outcome. In this study, we investigated whether epigenetic GATA5 alterations may result in changes in GATA5 mRNA expression levels and correlate with the observed prognostic impact of epigenetic changes in GATA5 in RCC.
Methods
Quantitative real-time reverse-transcribed polymerase chain reaction was applied to measure relative GATA5 mRNA expression levels in 135 kidney tissue samples, including 77 clear cell RCC (ccRCC) tissues and 58 paired adjacent normal renal tissue samples. Relative GATA5 expression levels were determined using the ΔΔCt method and detection of three endogenous control genes then compared to previously measured values of relative methylation.
Results
The mean relative GATA5 mRNA expression level exhibited an approximately 31-fold reduction in tumor specimens compared with corresponding normal tissues (p < 0.001, paired t-test). Decreased GATA5 mRNA expression was inversely correlated with increased GATA5 CGI methylation (p < 0.001) and was associated with shortened recurrence-free survival in ccRCC patients (p = 0.023, hazard ratio = 0.25).
Conclusion
GATA5 mRNA expression is decreased in ccRCC, likely due to gene silencing by methylation of the GATA5 CGI. Moreover, reduced GATA5 mRNA levels were associated with a poor clinical outcome, indicating a possible role of GATA5 for the development of aggressive ccRCC phenotypes.
doi:10.1186/1471-2407-14-101
PMCID: PMC3930894  PMID: 24533449
GATA5; Renal cell carcinoma; mRNA; Prognosis; DNA methylation
3.  Reduced mrna expression level of corticotropin-releasing hormone-binding protein is associated with aggressive human kidney cancer 
BMC Cancer  2013;13:199.
Background
Significance of Urocortin (Ucn or UcnI), Ucn2, Ucn3 and their receptors, Corticotropin Releasing Factor Receptor 1 and 2 (CRFR1 and CRFR2), and the binding protein, Corticotropin-Releasing Hormone-Binding Protein (CRHBP) in oncology is growing rapidly. The objective of our study was to assess the expression of the CRHBP mRNA and protein in renal cancer.
Methods
Tumoral tissues of 78 patients with clear cell renal cell cancer and their corresponding normal tissues were analyzed using quantitative mRNA expression analysis for detection of mRNA expression level. Protein expression and tissue localization of CRHBP protein in renal specimens was evaluated using western blotting, immunohistochemistry and double immunofluorescence, respectively.
Results
We found an approx. 33 fold decrease of average CRHBP mRNA level in tumoral tissues compared to paired normal tissues (p<0.001). Diminished CRHBP mRNA expression was positively correlated with advanced, metastasized and higher stage of disease (p<0.001, p=0.026, p=0.028 respectively). CRHBP protein was detected in glomeruli and proximal tubules of normal kidney while none or weak immunopositivity was found in cc-RCC (p<0.001).
Conclusions
The expression analysis of CRHBP shows that cc-RCC is characterized by a significant loss of CRHBP mRNA expression that furthermore is associated with a more aggressive state of tumors. Depletion of CRHBP proteins also indicate that the protein as part of the UCN system may be involved in renal carcinogenesis.
doi:10.1186/1471-2407-13-199
PMCID: PMC3653809  PMID: 23607589
4.  Caveolin 1 protein expression in renal cell carcinoma predicts survival 
BMC Urology  2011;11:25.
Background
Caveolae play a significant role in disease phenotypes such as cancer, diabetes, bladder dysfunction, and muscular dystrophy. The aim of this study was to elucidate the caveolin-1 (CAV1) protein expression in renal cell cancer (RCC) and to determine its potential prognostic relevance.
Methods
289 clear cell RCC tissue specimens were collected from patients undergoing surgery for renal tumors. Both cytoplasmic and membranous CAV1 expression were determined by immunohistochemistry and correlated with clinical variables. Survival analysis was carried out for 169 evaluable patients with a median follow up of 80.5 months (interquartile range (IQR), 24.5 - 131.7 months).
Results
A high CAV1 expression in the tumor cell cytoplasm was significantly associated with male sex (p = 0.04), a positive nodal status (p = 0.04), and poor tumor differentiation (p = 0.04). In contrast, a higher than average (i.e. > median) CAV1 expression in tumor cell membranes was only linked to male sex (p = 0.03). Kaplan-Meier analysis disclosed significant differences in 5-year overall (51.4 vs. 75.2%, p = 0.001) and tumor specific survival (55.3 vs. 80.1%, p = 0.001) for patients with higher and lower than average cytoplasmic CAV1 expression levels, respectively. Applying multivariable Cox regression analysis a high CAV1 protein expression level in the tumor cell cytoplasm could be identified as an independent poor prognostic marker of both overall (p = 0.02) and tumor specific survival (p = 0.03) in clear cell RCC patients.
Conclusion
Over expression of caveolin-1 in the tumour cell cytoplasm predicts a poor prognosis of patients with clear cell RCC. CAV1 is likely to be a useful prognostic marker and may play an important role in tumour progression. Therefore, our data encourage further investigations to enlighten the role of CAV1 and its function as diagnostic and prognostic marker in serum and/or urine of RCC patients.
doi:10.1186/1471-2490-11-25
PMCID: PMC3266190  PMID: 22152020
5.  Fibronectin 1 mRNA expression correlates with advanced disease in renal cancer 
BMC Cancer  2010;10:503.
Background
Fibronectin 1 (FN1) is a glycoprotein involved in cellular adhesion and migration processes. The aim of this study was to elucidate the role of FN1 in development of renal cell cancer (RCC) and to determine a prognostic relevance for optimal clinical management.
Methods
212 renal tissue samples (109 RCC, 86 corresponding tissues from adjacent normal renal tissue and 17 oncocytomas) were collected from patients undergoing surgery for renal tumors and subjected to total RNA extraction. Detection of FN1 mRNA expression was performed using quantitative real time PCR, three endogenous controls, renal proximal tubular epithelial cells (RPTEC) as biological control and the ΔΔCt method for calculation of relative quantities.
Results
Mean tissue specific FN1 mRNA expression was found to be increased approximately seven fold comparing RCC and corresponding kidney control tissues (p < 0.001; ANOVA). Furthermore, tissue specific mean FN1 expression was increased approx. 11 fold in clear cell compared to papillary RCC (p = 9×10-5; Wilcoxon rank sum test). Patients with advanced disease had higher FN1 expression when compared to organ-confined disease (p < 0.001; Wilcoxon rank sum test). Applying subgroup analysis we found a significantly higher FN1 mRNA expression between organ-confined and advanced disease in the papillary and not in the clear cell RCC group (p = 0.02 vs. p = 0.2; Wilcoxon rank sum test). There was an increased expression in RCC compared to oncocytoma (p = 0.016; ANOVA).
Conclusions
To our knowledge, this is the first study to show that FN1 mRNA expression is higher in RCC compared to normal renal tissue. FN1 mRNA expression might serve as a marker for RCC aggressiveness, indicating early systemic progression particularly for patients with papillary RCC.
doi:10.1186/1471-2407-10-503
PMCID: PMC2949811  PMID: 20860816
6.  Maspin protein expression correlates with tumor progression in non-muscle invasive bladder cancer 
Oncology Letters  2010;1(4):621-626.
Maspin is a 42-kDa protein that belongs to the family of serine protease inhibitors. It is involved in various physiological processes. In cancer tissue, Maspin was found to influence angiogenesis, tumor growth, metastasis and the prognosis of tumor patients. This study was performed to analyze the involvement of Maspin in transitional cell carcinoma of the bladder as well as its prognostic impact in a large patient cohort. Specimens from 162 non-muscle invasive bladder cancer patients (pTa, 91; pT1, 71) treated by transurethral resection with a minimum 3-year follow-up (median 58.5 months) were included in the present investigation. Tissue microarrays were constructed, and the specimens were immunohistochemically stained for Maspin protein expression. Each tissue specimen was assessed on a staining scale ranging from 0 (no staining) to 300 (strong staining) and correlated with various clinicopathological parameters. Maspin protein expression predicted progression with a sensitivity of 95% and a specificity of 70% (p<0.001). In predicting recurrence, Maspin staining showed 52% sensitivity and 67% specificity (p<0.05). Kaplan-Meier analyses were performed, and a low Maspin protein expression was correlated with a higher incidence of tumor progression (p<0.0001). However, expression levels of Maspin protein did not distinguish between pTa and pT1 specimens. Multivariate analyses indicated Maspin expression as an independent factor for predicting progression (p<0.0001) and recurrence (p<0.05). The present results suggest that the Maspin protein expression is an independent prognostic indicator for predicting recurrence and progression to muscle invasive disease. This study further emphasizes a possible clinical role of this novel tumor suppressor gene in transitional cell carcinoma of the bladder.
doi:10.3892/ol_00000110
PMCID: PMC3436411  PMID: 22966354
biomarker; maspin; recurrence; prognosis; progression; transitional cell carcinoma; transitional bladder cancer
7.  Urocortin and corticotropin-releasing factor receptor 2 in human renal cell carcinoma: disruption of an endogenous inhibitor of angiogenesis and proliferation 
World Journal of Urology  2009;27(6):825-830.
Purpose
Urocortin (Ucn) exerts its actions through activation of two corticotropin-releasing factor receptors (CRFRs), CRFR1 and CRFR2. Involvement of Ucn/CRFR2 system in pathophysiological conditions such as the regulation of angiogenesis and inhibition of proliferation has been already reported. Suppression of neovascularization through reduction of vascular endothelial growth factor and inhibition of tumor cell cycling is modulated mainly through activation of CRFR2. To find out a possible involvement of Ucn/CRFR2 in kidney tumor, we examined the expression of Ucn and CRFR2 in normal and tumoral kidney specimens.
Methods
We applied reverse transcriptase PCR (n = 14), immunofluorescence (IF) on tissue microarrays (n = 25) and confocal microscopy to examine the mRNA expression and peptide/protein localization of Ucn and CRFR2 in normal kidney versus clear cell renal cell carcinoma, respectively.
Results
Ucn and CRFR2 mRNAs are expressed in normal and tumor specimens. In normal tissue, IF showed a cytoplasmic staining of Ucn mainly in proximal tubules, whereas a diffuse nuclear staining with diverse intensity was observed in tumoral tissues. CRFR2 was detected in proximal tubules and vasculature of normal specimens. Intriguingly, an almost complete loss of CRFR2 was observed in epithelial cells and microvessels within tumor tissues.
Conclusions
Here, and for the first time, we show the expression of Ucn and CRFR2 in human kidney and renal cell carcinoma. We propose that the nuclear translocation of Ucn along with the loss of CRFR2 in epithelial cells and microvasculature of tumoral specimens may be involved in the pathobiology of renal cell carcinoma.
doi:10.1007/s00345-009-0417-x
PMCID: PMC2780655  PMID: 19437022
Urocortin; CRFR2; Kidney tumor; Angiogenesis; Proliferation
8.  Notch signalling in the paraxial mesoderm is most sensitive to reduced Pofut1 levels during early mouse development 
Background
The evolutionarily conserved Notch signalling pathway regulates multiple developmental processes in a wide variety of organisms. One critical posttranslational modification of Notch for its function in vivo is the addition of O-linked fucose residues by protein O-fucosyltransferase 1 (POFUT1). In addition, POFUT1 acts as a chaperone and is required for Notch trafficking. Mouse embryos lacking POFUT1 function die with a phenotype indicative of global inactivation of Notch signalling. O-linked fucose residues on Notch can serve as substrates for further sugar modification by Fringe (FNG) proteins. Notch modification by Fringe differently affects the ability of ligands to activate Notch receptors in a context-dependent manner indicating a complex modulation of Notch activity by differential glycosylation. Whether the context-dependent effects of Notch receptor glycosylation by FNG reflect different requirements of distinct developmental processes for O-fucosylation by POFUT1 is unclear.
Results
We have identified and characterized a spontaneous mutation in the mouse Pofut1 gene, referred to as "compact axial skeleton" (cax). Cax carries an insertion of an intracisternal A particle retrotransposon into the fourth intron of the Pofut1 gene and represents a hypomorphic Pofut1 allele that reduces transcription and leads to reduced Notch signalling. Cax mutant embryos have somites of variable size, showed partly abnormal Lfng expression and, consistently defective anterior-posterior somite patterning and axial skeleton development but had virtually no defects in several other Notch-regulated early developmental processes outside the paraxial mesoderm that we analyzed.
Conclusion
Notch-dependent processes apparently differ with respect to their requirement for levels of POFUT1. Normal Lfng expression and anterior-posterior somite patterning is highly sensitive to reduced POFUT1 levels in early mammalian embryos, whereas other early Notch-dependent processes such as establishment of left-right asymmetry or neurogenesis are not. Thus, it appears that in the presomitic mesoderm (PSM) Notch signalling is particularly sensitive to POFUT1 levels. Reduced POFUT1 levels might affect Notch trafficking or overall O-fucosylation. Alternatively, reduced O-fucosylation might preferentially affect sites that are substrates for LFNG and thus important for somite formation and patterning.
doi:10.1186/1471-213X-9-6
PMCID: PMC2637848  PMID: 19161597
9.  RASSF1A protein expression and correlation with clinicopathological parameters in renal cell carcinoma 
BMC Urology  2008;8:12.
Background
Epigenetic silencing of RAS association family 1A (RASSF1A) tumor suppressor gene occurs in various histological subtypes of renal cell carcinoma (RCC) but RASSF1A protein expression in clear cell RCC as well as a possible correlation with clinicopathological parameters of patients has not been analyzed at yet.
Methods
318 primary clear cell carcinomas were analyzed using tissue microarray analysis and immunohistochemistry. Survival analysis was carried out for 187 patients considering a follow-up period of 2–240 month.
Results
Expression of RASSF1A was found to be significantly decreased in tumoral cells when compared to normal tubular epithelial cells. RASSF1A immunopositivity was significantly associated with pT stage, group stage and histological grade of tumors and showed a tendency for impaired survival in Kaplan-Meier analysis.
Conclusion
While most tumors demonstrate a loss of RASSF1A protein, a subset of tumors was identified to exhibit substantial RASSF1A protein expression and show increased tumor progression. Thus RCC tumorigenesis without depletion of RASSF1A may be associated with an adverse clinical outcome.
doi:10.1186/1471-2490-8-12
PMCID: PMC2572051  PMID: 18822131
10.  RASSF1A promoter methylation and expression analysis in normal and neoplastic kidney indicates a role in early tumorigenesis 
Molecular Cancer  2007;6:49.
Background
Epigenetic silencing of the RAS association domain family 1A (RASSF1A) tumor suppressor gene promoter has been demonstrated in renal cell carcinoma (RCC) as a result of promoter hypermethylation. Contradictory results have been reported for RASSF1A methylation in normal kidney, thus it is not clear whether a significant difference between RASSF1A methylation in normal and tumor cells of the kidney exists. Moreover, RASSF1A expression has not been characterized in tumors or normal tissue as yet.
Results
Using combined bisulfite restriction analysis (COBRA) we compared RASSF1A methylation in 90 paired tissue samples obtained from primary kidney tumors and corresponding normal tissue. Bisulfite sequence analysis was carried out using both pooled amplicons from the tumor and normal tissue groups and subclones obtained from a single tissue pair. Expression of RASSF1A was analyzed by the use of tissue arrays and immunohistochemistry. We found significantly increased methylation in tumor samples (mean methylation, 20%) compared to corresponding normal tissues (mean methylation, 11%; P < 0.001). Densely methylated sequences were found both in pooled and individual sequences of normal tissue. Immunohistochemical analysis revealed a significant reduced expression of RASSF1A in most of the tumor samples. Heterogeneous expression patterns of RASSF1A were detected in a subgroup of histologically normal tubular epithelia.
Conclusion
Our methylation and expression data support the hypothesis that RASSF1A is involved in early tumorigenesis of renal cell carcinoma.
doi:10.1186/1476-4598-6-49
PMCID: PMC1939711  PMID: 17634119

Results 1-10 (10)