PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Genetic variation in SPAG16 regions encoding the WD40 repeats is not associated with reduced sperm motility and axonemal defects in a population of infertile males 
BMC Urology  2012;12:27.
Background
SPAG16 is a critical structural component of motile cilia and flagella. In the eukaryotic unicellular algae Chlamydomonas, loss of gene function causes flagellar paralysis and prevents assembly of the “9 + 2” axoneme central pair. In mice, we have previously shown that loss of Spag16 gene function causes male infertility and severe sperm motility defects. We have also reported that a heterozygous mutation of the human SPAG16 gene reduces stability of the sperm axonemal central apparatus.
Methods
In the present study, we analyzed DNA samples from 60 infertile male volunteers of Western European (Italian) origin, to search for novel SPAG16 gene mutations, and to determine whether increased prevalence of SPAG16 single nucleotide polymorphisms (SNPs) was associated with infertility phenotypes. Semen parameters were evaluated by light microscopy and sperm morphology was comprehensively analyzed by transmission electron microscopy (TEM).
Results
For gene analysis, sequences were generated covering exons encoding the conserved WD40 repeat region of the SPAG16 protein and the flanking splice junctions. No novel mutations were found, and the four SNPs in the assessed gene region were present at expected frequencies. The minor alleles were not associated with any assessed sperm parameter in the sample population.
Conclusions
Analysis of the SPAG16 regions encoding the conserved WD repeats revealed no evidence for association of mutations or genetic variation with sperm motility and ultrastructural sperm characteristics in a cohort of Italian infertile males.
doi:10.1186/1471-2490-12-27
PMCID: PMC3487941  PMID: 22963137
Sperm ultrastructure; Axoneme; Motile cilia; Male infertility; Central apparatus; Semen analysis
2.  Mouse RC/BTB2, a Member of the RCC1 Superfamily, Localizes to Spermatid Acrosomal Vesicles 
PLoS ONE  2012;7(6):e39846.
Mouse RC/BTB2 is an unstudied protein of the RCC1 (Regulator of Chromosome Condensation) superfamily. Because of the significant remodeling of chromatin that occurs during spermiogenesis, we characterized the expression and localization of mouse RC/BTB2 in the testis and male germ cells. The Rc/btb2 gene yields two major transcripts: 2.3 kb Rc/btb2-s, present in most somatic tissues examined; and 2.5 kb Rc/btb2-t, which contains a unique non-translated exon in its 5′-UTR that is only detected in the testis. During the first wave of spermatogenesis, Rc/btb2-t mRNA is expressed from day 8 after birth, reaching highest levels of expression at day 30 after birth. The full-length protein contains three RCC1 domains in the N-terminus, and a BTB domain in the C-terminus. In the testis, the protein is detectable from day 12, but is progressively up-regulated to day 30 and day 42 after birth. In spermatids, some of the protein co-localizes with acrosomal markers sp56 and peanut lectin, indicating that it is an acrosomal protein. A GFP-tagged RCC1 domain is present throughout the cytoplasm of transfected CHO cells. However, both GFP-tagged, full-length RC/BTB2 and a GFP-tagged BTB domain localize to vesicles in close proximity to the nuclear membrane, suggesting that the BTB domain might play a role in mediating full-length RC/BTB2 localization. Since RCC1 domains associate with Ran, a small GTPase that regulates molecular trafficking, it is possible that RC/BTB2 plays a role in transporting proteins during acrosome formation.
doi:10.1371/journal.pone.0039846
PMCID: PMC3387240  PMID: 22768142
3.  Spag16, an Axonemal Central Apparatus Gene, Encodes a Male Germ Cell Nuclear Speckle Protein that Regulates SPAG16 mRNA Expression 
PLoS ONE  2011;6(5):e20625.
Spag16 is the murine orthologue of Chlamydomonas reinhardtii PF20, a protein known to be essential to the structure and function of the “9+2” axoneme. In Chlamydomonas, the PF20 gene encodes a single protein present in the central pair of the axoneme. Loss of PF20 prevents central pair assembly/integrity and results in flagellar paralysis. Here we demonstrate that the murine Spag16 gene encodes two proteins: 71 kDa SPAG16L, which is found in all murine cells with motile cilia or flagella, and 35 kDa SPAG16S, representing the C terminus of SPAG16L, which is expressed only in male germ cells, and is predominantly found in specific regions within the nucleus that also contain SC35, a known marker of nuclear speckles enriched in pre-mRNA splicing factors. SPAG16S expression precedes expression of SPAG16L. Mice homozygous for a knockout of SPAG16L alone are infertile, but show no abnormalities in spermatogenesis. Mice chimeric for a mutation deleting the transcripts for both SPAG16L and SPAG16S have a profound defect in spermatogenesis. We show here that transduction of SPAG16S into cultured dispersed mouse male germ cells and BEAS-2B human bronchial epithelial cells increases SPAG16L expression, but has no effect on the expression of several other axoneme components. We also demonstrate that the Spag16L promoter shows increased activity in the presence of SPAG16S. The distinct nuclear localization of SPAG16S and its ability to modulate Spag16L mRNA expression suggest that SPAG16S plays an important role in the gene expression machinery of male germ cells. This is a unique example of a highly conserved axonemal protein gene that encodes two protein products with different functions.
doi:10.1371/journal.pone.0020625
PMCID: PMC3105110  PMID: 21655194

Results 1-3 (3)