Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Differential Induction of Antimicrobial REGIII by the Intestinal Microbiota and Bifidobacterium breve NCC2950 
Applied and Environmental Microbiology  2013;79(24):7745-7754.
The intestinal microbiota is a key determinant of gut homeostasis, which is achieved, in part, through regulation of antimicrobial peptide secretion. The aim of this study was to determine the efficiency by which members of the intestinal microbiota induce the antimicrobial peptide REGIII and to elucidate the underlying pathways. We showed that germfree mice have low levels of REGIII-γ in their ileum and colon compared to mice with different intestinal microbiota backgrounds. Colonization with a microbiota of low diversity (altered Schaedler flora) did not induce the expression of REGIII-γ as effectively as a complex community (specific pathogen free). Monocolonization with the probiotic Bifidobacterium breve, but not with the nonprobiotic commensal Escherichia coli JM83, upregulated REGIII-γ expression. Induction of REGIII-γ by B. breve was abrogated in mice lacking MyD88 and Ticam1 signaling. Both live and heat-inactivated B. breve but not spent culture medium from B. breve induced the expression of REGIII-α, the human ortholog and homolog of REGIII-γ, in human colonic epithelial cells (Caco-2). Taken together, the results suggest that REGIII-γ expression in the intestine correlates with the richness of microbiota composition. Also, specific bacteria such as Bifidobacterium breve NCC2950 effectively induce REGIII production in the intestine via the MyD88-Ticam1 pathway. Treatment with this probiotic may enhance the mucosal barrier and protect the host from infection and inflammation.
PMCID: PMC3837813  PMID: 24096422
2.  Urinary levels of Hepatocarcinoma-intestine-pancreas/Pancreatitis-associated protein as a diagnostic biomarker in patients with bladder cancer 
BMC Urology  2012;12:24.
To assess the possibility of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) as a biological marker for detecting Bladder cancer (BCa), we examined the expression of HIP/PAP in both BCa specimens and BCa cell lines and measured HIP/PAP levels in urine from patients with BCa.
HIP/PAP expression in BCa samples was evaluated by western blot analysis, and urinary levels of HIP/PAP in patients with BCa were measured by enzyme-linked immunosorbent assay. Urine samples were collected from 10 healthy volunteers and 109 with benign urological disorders as controls, and from 101 patients who were diagnosed with BCa.
HIP/PAP was highly expressed in BCa samples as compared with control bladder. Urinary HIP/PAP concentrations were significantly higher in BCa patients than in controls (median value; 3.184 pg/mL vs. 55.200 pg/mL, P <0.0001, by Mann–Whitney U test). Urinary HIP/PAP levels in BCa patients correlated positively with pathological T stages and progression-risk groups among non-muscle invasive BCa (P = 0.0008, by Kruskal-Wallis test). Regarding the recurrence-risk classifications of non-muscle invasive BCa, the urinary levels of HIP/PAP were significantly higher in the intermediate than in the low risk group (P = 0.0002, by Mann–Whitney U test). Based on a cut-off of 8.5 pg/mL, the ability of urinary HIP/PAP levels to detect BCa had a sensitivity of 80.2%, specificity of 78.2%, positive predictive value (PPV) of 75.7%, and negative predictive value (NPV) of 82.3%.
HIP/PAP was abundantly expressed in BCa, and the urinary levels of HIP/PAP could be a novel and potent biomarker for detection of BCa, and also for predicting the risks of recurrence- and progression-risk of non-muscle invasive BCa. A large scale study will be needed to establish the usefulness of this biomarker.
PMCID: PMC3487857  PMID: 22943287
Bladder cancer; Urinary marker; HIP/PAP; ELISA; ROC
3.  The nuclear events guiding successful nerve regeneration 
Peripheral nervous system (PNS) neurons survive and regenerate after nerve injury, whereas central nervous system (CNS) neurons lack the capacity to do so. The inability of the CNS to regenerate presumably results from a lack of intrinsic growth activity and a permissive environment. To achieve CNS regeneration, we can learn from successful nerve regeneration in the PNS. Neurons in the PNS elicit dynamic changes in gene expression in response to permissive environmental cues following nerve injury. To switch gene expression on and off in injured neurons, transcription factors and their networks should be carefully orchestrated according to the regeneration program. This is the so-called “intrinsic power of axonal growth.” There is an increasing repertoire of candidate transcription factors induced by nerve injury. Some of them potentiate the survival and axonal regeneration of damaged neurons in vivo; however, our knowledge of transcriptional events in injured neurons is still limited. How do these transcription factors communicate with each other? How does the transcriptional machinery regulate the wide variety of regeneration-associated genes (RAGs) in the properly coordinated manner? In this review, we describe our current understanding of the injury-inducible transcriptional factors that enhance the intrinsic growth capacity, and propose a potential role for specificity protein 1 (Sp1), which provides a platform to recruit injury-inducible transcription factors, in simultaneous gene regulation. Finally, we discuss an additional mechanism that is involved in epigenetic modifications in damaged neurons. A comprehensive understanding of the nuclear events in injured neurons will provide clues to clinical interventions for successful nerve regeneration.
PMCID: PMC3235624  PMID: 22180737
ATF3; c-Jun; STAT3; Sp1; DINE; transcription; axotomy; nerve injury
4.  The increase of alpha-melanocyte-stimulating hormone in the plasma of chronic fatigue syndrome patients 
BMC Neurology  2010;10:73.
Despite extensive research, no reliable biological marker for chronic fatigue syndrome (CFS) has yet been identified. However, hyperactivation of melanotrophs in the pituitary gland and increased levels of plasma alpha-melanocyte-stimulating hormone (α-MSH) have recently been detected in an animal model of chronic stress. Because CFS is considered to be caused partly by chronic stress events, increased α-MSH plasma levels may also occur in CFS patients. We therefore examined α-MSH levels in CFS patients.
Fifty-five CFS patients, who were previously diagnosed within 10 years of with the disease, were enrolled in this study. Thirty healthy volunteers were studied as controls. Fasting bloods samples were collected in the morning and evaluated for their plasma levels of α-MSH, adrenocorticotropic hormone (ACTH), serum cortisol and dehydroepiandrosterone sulfate (DHEA-S). Mean levels of α-MSH were compared between the CFS and control groups using Welch's t test.
The mean plasma α-MSH concentration in the CFS group (17.9 ± 1.0 pg/mL) was significantly higher than that in healthy controls (14.5 ± 1.0 pg/mL, p = 0.02). However, there was a wide range of values in the CFS group. The factors correlated with the plasma α-MSH values were analyzed using Spearman's rank correlation. A negative correlation was found between the duration of the CFS and the plasma α-MSH values (p = 0.04, rs = -0.28), but no correlations with ACTH, cortisol or DHEA-S levels were identified (p = 0.55, 0.26, 0.33, respectively). The CFS patients were divided into two groups: patients diagnosed for ≤ 5 years' duration, and those diagnosed for 5-10 years' duration. They were compared with the healthy controls using one-way ANOVA and Tukey-Kramer multiple comparison tests. The mean α-MSH concentration in the ≤ 5 years group was 20.8 ± 1.2 pg/mL, which was significantly higher than that in the healthy controls (p < 0.01). There was no significant difference between the 5-10 year group (15.6 ± 1.4 pg/mL) and the healthy controls.
CFS patients with a disease duration of ≤ 5 years had significantly higher levels of α-MSH in their peripheral blood. α-MSH could be a potent biological marker for the diagnosis of CFS, at least during the first 5 years after onset of the disease.
PMCID: PMC2933583  PMID: 20731841
5.  Targeted and regulable expression of transgenes in hepatic stellate cells and myofibroblasts in culture and in vivo using an adenoviral Cre/loxP system to antagonise hepatic fibrosis 
Gut  2006;56(3):396-404.
Activated hepatic stellate cells (HSCs) are an attractive target for antifibrotic therapy based on their key role in extracellular matrix accumulation during liver injury.
: To develop a system for regulable and cell‐specific gene expression in HSCs to enable targeted delivery of therapeutic genes.
Two types of recombinant adenoviral vectors were constructed, one expressing the Cre gene under the surveillance of specific promoters and the other containing a potent expression unit that was activated by Cre recombinase‐mediated recombination to remove an upstream lox‐flanked “stuffer” sequence, thereby amplifying the expression of downstream transgene of interest while maintaining specificity.
When the promoter of the collagen 1A2 gene drove Cre recombinase expression in primary quiescent rat HSC, modest green fluorescence protein (GFP) expression was observed. However, in activated HSC, the collagen promoter effectively drove Cre recombinase activity, as assessed by the increased expression of GFP. In contrast, GFP expression was barely observed when the collagen promoter was expressed in hepatocytes. HSC‐specific expression of Smad7 considerably reduced the expression of type I collagen in culture and decreased fibrosis in two liver fibrosis models. Finally, to achieve targeted clearance of activated HSC in culture and in vivo, thymidine kinase was selectively expressed under the control of the collagen promoter, which conferred cell‐specific killing by ganciclovir leading to reduced fibrosis.
Our results show the potential utility of transcriptionally controlled gene therapy using a Cre/loxP system to ameliorate hepatic fibrosis in vivo.
PMCID: PMC1856807  PMID: 16956920
6.  mTOR Is Essential for Growth and Proliferation in Early Mouse Embryos and Embryonic Stem Cells 
Molecular and Cellular Biology  2004;24(15):6710-6718.
TOR is a serine-threonine kinase that was originally identified as a target of rapamycin in Saccharomyces cerevisiae and then found to be highly conserved among eukaryotes. In Drosophila melanogaster, inactivation of TOR or its substrate, S6 kinase, results in reduced cell size and embryonic lethality, indicating a critical role for the TOR pathway in cell growth control. However, the in vivo functions of mammalian TOR (mTOR) remain unclear. In this study, we disrupted the kinase domain of mouse mTOR by homologous recombination. While heterozygous mutant mice were normal and fertile, homozygous mutant embryos died shortly after implantation due to impaired cell proliferation in both embryonic and extraembryonic compartments. Homozygous blastocysts looked normal, but their inner cell mass and trophoblast failed to proliferate in vitro. Deletion of the C-terminal six amino acids of mTOR, which are essential for kinase activity, resulted in reduced cell size and proliferation arrest in embryonic stem cells. These data show that mTOR controls both cell size and proliferation in early mouse embryos and embryonic stem cells.
PMCID: PMC444840  PMID: 15254238

Results 1-6 (6)