Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Loss of TIMP-1 immune expression and tumor recurrence in localized prostate cancer 
Introduction and objective:
Overexpression of MMPs has been related to biochemical recurrence after radical prostatectomy. TIMP1 and TIMP2 are controllers of MMPs and the aim of this study is to evaluate the expression levels of MMPs and their regulators using immunohistochemistry in tissue microarray of localized prostate cancer (PC).
Materials and Methods:
Immune-expression of MMP-9, MMP-2, TIMP1, TIMP-2, MMP-14 and IL8, were analyzed by immunohistochemistry in radical prostatectomy specimens of 40 patients with localized PC who underwent surgery between September 1997 and February 2000. Protein expression was considered as categorical variables, negative or positive. The results of the immune-expression were correlated to Gleason score (GS), pathological stage (TNM), pre-operatory PSA serum levels and biochemical recurrence in a mean follow up period of 92.5 months.
The loss of TIMP1 immune-expression was related to biochemical recurrence. When TIMP1 was negative, 56.3% patients recurred versus 22.2% of those whose TIMP1 was positive (p=0.042). MMP-9, MMP-2, IL8 and MMP-14 were positive in the majority of PC. TIMP-2 was negative in all cases.
Negative immune-expression of TIMP1 is correlated with biochemical recurrence in patients with PC possibly by failing to control MMP-9, an important MMP related to cancer progression.
PMCID: PMC4756933  PMID: 26742965
Prostatic Neoplasms; Matrix Metalloproteinases; Prognosis; Diagnosis; Gene Expression
2.  The involvement of miR-100 in bladder urothelial carcinogenesis changing the expression levels of mRNA and proteins of genes related to cell proliferation, survival, apoptosis and chromosomal stability 
MicroRNAs (miRNA) are small non-coding RNAs that play an important role in the control of gene expression by inhibiting protein translation or promoting messenger RNA degradation. Today, miRNAs have been shown to be involved in various physiological and pathological cellular processes, including cancer, where they can act as oncogenes or tumor suppressor genes. Recently, lowered expression of miR-100, resulting in upregulation of FGFR3, has been correlated with low-grade, non-invasive bladder urothelial cancer, as an alternative oncogenesis pathway to the typical FGFR3 gene mutation. Our aim is to analyze the role of miR-100 in bladder cancer cell lines in controlling the expression of some of its possible target genes, including FGFR3 and its relationship with proliferation, apoptosis and DNA ploidy.
The bladder cancer cell lines RT4 and T24 were transfected with pre-miR 100, anti-miR 100 and their respective controls using a lipid-based formulation. After transfection mRNA and protein levels of its supposed target genes THAP2, BAZ2A, mTOR, SMARCA5 and FGFR3 were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and western blotting. Cell proliferation, apoptosis and DNA ploidy were analyzed by flow cytometry. For statistical analysis, a t-test was applied, p < 0.05 was considered significant.
After miR-100 transfection, there was a significant reduction in the mRNA of mTOR (p = 0.006), SMARCA5 (p = 0.007) and BAZ2A (p = 0.029) in RT4, mTOR (p = 0.023) and SMARCA5 (p = 0.015) in T24. There was a reduction in the expression of all proteins, variable from 22.5% to 57.1% in both cell lines. In T24 miR-100 promoted an increase in cell proliferation and anti-miR 100 promoted apoptosis characterizing miR-100 as an oncomiR in this cell line representative of a high-grade urothelial carcinoma.
miR-100 transfection reduces expression of BAZ2A, mTOR and SMARCA5 mRNA and protein in BC cell lines. miR-100 would be classified as an oncomiR in T24 cells representative of high grade urothelial carcinoma promoting increase in cell proliferation and reduction in apoptosis. The knowledge of miRNA role in tumors will allow their use as tumor markers and targets for new therapies.
PMCID: PMC4260205  PMID: 25493074
Bladder cancer; MicroRNA; miR-100; Gene expression; Protein expression; PCR; Western blotting
3.  Comprehensive Study of Gene and microRNA Expression Related to Epithelial-Mesenchymal Transition in Prostate Cancer 
PLoS ONE  2014;9(11):e113700.
Prostate cancer is the most common cancer in men, and most patients have localized disease at the time of diagnosis. However, 4% already present with metastatic disease. Epithelial-mesenchymal transition is a fundamental process in carcinogenesis that has been shown to be involved in prostate cancer progression. The main event in epithelial-mesenchymal transition is the repression of E-cadherin by transcription factors, but the process is also regulated by microRNAs. The aim of this study was to analyze gene and microRNA expression involved in epithelial-mesenchymal transition in localized prostate cancer and metastatic prostate cancer cell lines and correlate with clinicopathological findings. We studied 51 fresh frozen tissue samples from patients with localized prostate cancer (PCa) treated by radical prostatectomy and three metastatic prostate cancer cell lines (LNCaP, DU145, PC3). The expression of 10 genes and 18 miRNAs were assessed by real-time PCR. The patients were divided into groups according to Gleason score, pathological stage, preoperative PSA, biochemical recurrence, and risk group for correlation with clinicopathological findings. The majority of localized PCa cases showed an epithelial phenotype, with overexpression of E-cadherin and underexpression of the mesenchymal markers. MiRNA-200 family members and miRNAs 203, 205, 183, 373, and 21 were overexpressed, while miRNAs 9, 495, 29b, and 1 were underexpressed. Low-expression levels of miRNAs 200b, 30a, and 1 were significantly associated with pathological stage. Lower expression of miR-200b was also associated with a Gleason score ≥8 and shorter biochemical recurrence-free survival. Furthermore, low-expression levels of miR-30a and high-expression levels of Vimentin and Twist1 were observed in the high-risk group. Compared with the primary tumor, the metastatic cell lines showed significantly higher expression levels of miR-183 and Twist1. In summary, miRNAs 200b, 30a, 1, and 183 and the genes Twist1 and Vimentin might play important roles in the progression of prostate cancer and may eventually become important prognostic markers.
PMCID: PMC4237496  PMID: 25409297
4.  MicroRNA 100: a context dependent miRNA in prostate cancer 
Clinics  2013;68(6):797-802.
MicroRNAs are noncoding RNA molecules involved in the development and progression of tumors. We have found that miRNA-100 is underexpressed in metastatic prostate cancer compared to localized disease. Conversely higher levels of miR-100 are related to biochemical recurrence after surgery. This suggests that miR-100 may be a context-dependent miRNA, acting as oncogene or tumor suppressor miRNA. Our aim is to demonstrate the role of miR-100 in the control of predicted target genes in prostate cancer cell lines.
Cell lines DU145 and PC3 were transfected with miR-100, antimiR-100 and after 24 h and 48 h of exposure, qRT-PCR and western blot were performed for mTOR, FGFR3, THAP2, SMARCA5 and BAZ2A.
There was reduction in mTOR (p = 0.025), THAP2 (p = 0.038), SMARCA5 (p = 0.001) and BAZ2A (p = 0.006) mRNA expression in DU145 cells after exposure to miR-100. In PC3 cells, mTOR expression was decreased by miR-100 (p = 0.01). There was a reduction in the expression levels of proteins encoded by studied genes, ranging from 34% to 69%.
We demonstrate that miR-100 is a context-dependent miRNA controlling BAZ2, mTOR, FGFR3, SMARCA5 and THAP2 that might be involved in PC progression. The elucidation of the roles of miRNAs in tumors is important because they can be used as therapeutic targets in the future.
PMCID: PMC3674267  PMID: 23778488
Prostate Cancer; Micro RNA; miR-100; Gene Expression; Protein Expression; PCR; Western Blot
5.  The role of micro RNAs let7c, 100 and 218 expression and their target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in prostate cancer 
Clinics  2013;68(5):652-657.
The aim of this study is to verify the expression of proteins that are controlled by miR-let7c, 100 and 218 using immunohistochemistry in tissue microarray representative of localized and metastasized the lymph nodes and bone prostate cancer.
To verify the expression of proteins that are controlled by miR-let7c (C-MYC, BUB1, RAS) 100 (SMARCA5, RB) and 218 (LAMB3) and cell proliferation (Ki-67) we used immunohistochemistry and computerized image system ImageJ MacBiophotonics in three tissue microarrays representative of localized prostate cancer and lymph node and bone metastases. miRNA expression was evaluated by qRT-PCR using 60 paraffin blocks to construct the tissue microarray representative of localized disease.
RAS expression was increased in localized prostate cancer and bone metastases compared to the lymph nodes (p = 0.017). RB showed an increase in expression from localized prostate cancer to lymph node and bone metastasis (p = 0.036). LAMB3 was highly expressed in localized and lymph node metastases (p<0.001). Cell proliferation evaluated by Ki-67 showed an increase from localized prostate cancer to metastases (p<0.001). We did not found any relationship between C-MYC (p = 0.253), BUB1 (p = 0.649) and SMARCA5 (p = 0.315) protein expression with prognosis or tumor behavior.
We found that the expression of RAS, RB, LAMB3 and Ki-67 changed in the different stages of prostate cancer. Furthermore, we confirmed the overexpression of the miRNAs let7c, 100 and 218 in localized prostate cancer but failed to show the control of protein expression by the putative controller miRNAs using immunohistochemistry.
PMCID: PMC3654318  PMID: 23778407
Prostate Cancer; Prognosis; Tumor Markers; Micro RNA; Immunohistochemistry; RAS; C-MYC; BUB1; SMARCA5; LAMB3; Ki-67, RB
6.  Prima-1 induces apoptosis in bladder cancer cell lines by activating p53 
Clinics  2013;68(3):297-303.
Bladder cancer represents 3% of all carcinomas in the Brazilian population and ranks second in incidence among urological tumors, after prostate cancer. The loss of p53 function is the main genetic alteration related to the development of high-grade muscle-invasive disease. Prima-1 is a small molecule that restores tumor suppressor function to mutant p53 and induces cancer cell death in various cancer types. Our aim was to investigate the ability of Prima-1 to induce apoptosis after DNA damage in bladder cancer cell lines.
The therapeutic effect of Prima-1 was studied in two bladder cancer cell lines: T24, which is characterized by a p53 mutation, and RT4, which is the wild-type for the p53 gene. Morphological features of apoptosis induced by p53, including mitochondrial membrane potential changes and the expression of thirteen genes involved in apoptosis, were assessed by microscopic observation and quantitative real-time PCR (qRT-PCR).
Prima-1 was able to reactivate p53 function in the T24 (p53 mt) bladder cancer cell line and promote apoptosis via the induction of Bax and Puma expression, activation of the caspase cascade and disruption of the mitochondrial membrane in a BAK-independent manner.
Prima-1 is able to restore the transcriptional activity of p53. Experimental studies in vivo may be conducted to test this molecule as a new therapeutic agent for urothelial carcinomas of the bladder, which characteristically harbor p53 mutations.
PMCID: PMC3611750  PMID: 23644847
Bladder cancer; p53; Apoptosis; Prima-1
7.  miR-21 may acts as an oncomir by targeting RECK, a matrix metalloproteinase regulator, in prostate cancer 
BMC Urology  2012;12:14.
Prognosis of prostate cancer (PCa) is based mainly in histological aspects together with PSA serum levels that not always reflect the real aggressive potential of the neoplasia. The micro RNA (miRNA) mir-21 has been shown to regulate invasiveness in cancer through translational repression of the Metaloproteinase (MMP) inhibitor RECK. Our aim is to investigate the levels of expression of RECK and miR-21 in PCa comparing with classical prognostic factors and disease outcome and also test if RECK is a target of miR-21 in in vitro study using PCa cell line.
Materials and methods
To determine if RECK is a target of miR-21 in prostate cancer we performed an in vitro assay with PCa cell line DU-145 transfected with pre-miR-21 and anti-miR-21. To determine miR-21 and RECK expression levels in PCa samples we performed quantitative real-time polymerase chain reaction (qRT-PCR).
The in vitro assays showed a decrease in expression levels of RECK after transfection with pre-miR-21, and an increase of MMP9 that is regulated by RECK compared to PCa cells treated with anti-miR-21. We defined three profiles to compare the prognostic factors. The first was characterized by miR-21 and RECK underexpression (N = 25) the second was characterized by miR-21 overexpression and RECK underexpression (N = 12), and the third was characterized by miR-21 underexpression and RECK overexpression (N = 16). From men who presented the second profile (miR-21 overexpression and RECK underexpression) 91.7% were staged pT3. For the other two groups 48.0%, and 46.7% of patients were staged pT3 (p = 0.025).
Our results demonstrate RECK as a target of miR-21. We believe that miR-21 may be important in PCa progression through its regulation of RECK, a known regulator of tumor cell invasion.
PMCID: PMC3431982  PMID: 22642976
Prostate cancer; Prognosis; RECK; Micro RNA; Metaloproteinases

Results 1-7 (7)