PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Bio-Logic Builder: A Non-Technical Tool for Building Dynamical, Qualitative Models 
PLoS ONE  2012;7(10):e46417.
Computational modeling of biological processes is a promising tool in biomedical research. While a large part of its potential lies in the ability to integrate it with laboratory research, modeling currently generally requires a high degree of training in mathematics and/or computer science. To help address this issue, we have developed a web-based tool, Bio-Logic Builder, that enables laboratory scientists to define mathematical representations (based on a discrete formalism) of biological regulatory mechanisms in a modular and non-technical fashion. As part of the user interface, generalized “bio-logic” modules have been defined to provide users with the building blocks for many biological processes. To build/modify computational models, experimentalists provide purely qualitative information about a particular regulatory mechanisms as is generally found in the laboratory. The Bio-Logic Builder subsequently converts the provided information into a mathematical representation described with Boolean expressions/rules. We used this tool to build a number of dynamical models, including a 130-protein large-scale model of signal transduction with over 800 interactions, influenza A replication cycle with 127 species and 200+ interactions, and mammalian and budding yeast cell cycles. We also show that any and all qualitative regulatory mechanisms can be built using this tool.
doi:10.1371/journal.pone.0046417
PMCID: PMC3474764  PMID: 23082121
2.  The Cell Collective: Toward an open and collaborative approach to systems biology 
BMC Systems Biology  2012;6:96.
Background
Despite decades of new discoveries in biomedical research, the overwhelming complexity of cells has been a significant barrier to a fundamental understanding of how cells work as a whole. As such, the holistic study of biochemical pathways requires computer modeling. Due to the complexity of cells, it is not feasible for one person or group to model the cell in its entirety.
Results
The Cell Collective is a platform that allows the world-wide scientific community to create these models collectively. Its interface enables users to build and use models without specifying any mathematical equations or computer code - addressing one of the major hurdles with computational research. In addition, this platform allows scientists to simulate and analyze the models in real-time on the web, including the ability to simulate loss/gain of function and test what-if scenarios in real time.
Conclusions
The Cell Collective is a web-based platform that enables laboratory scientists from across the globe to collaboratively build large-scale models of various biological processes, and simulate/analyze them in real time. In this manuscript, we show examples of its application to a large-scale model of signal transduction.
doi:10.1186/1752-0509-6-96
PMCID: PMC3443426  PMID: 22871178

Results 1-2 (2)