Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("Klinge, uwes")
1.  Introducing a Method of In Vitro Testing of Different Anchoring Systems Used for Female Incontinence and Prolapse Surgery 
BioMed Research International  2013;2013:401417.
Aims. To develop a method for in vitro testing to compare different intracorporeal anchoring systems (AS) used, for example, in single-incision slings or vaginal meshes. Intracorporeal fixation needs reliable anchorage systems, which keep the implant in the operative and early postoperative phase in place. Up to now, the impact of the design of current anchor systems and their capability to provide sufficient retention forces is not known. Methods. Four AS (“PelFix”, “Surelift”, “TFS”, and “MiniArc”) were evaluated in an animal model and a ballistic gelatine model with pull-out tests. We performed ANOVA with post hoc Bonferroni. Results were presented as mean values whereby a significance level of <0.05 was considered significant. Results. The four systems showed significantly different pull-out forces. Depending on mesh structure, size, and form of the AS, mechanical strain resulted in deformation with local peak stresses. Under the condition of form stability, relative differences of pull-out forces did not change in different tissues. Conclusions. Reliable testing of different AS in their ability to keep mesh implants in place can be done in animal models and in especially designed ballistic gelatine. These methods of testing will help to modify AS in novel pelvic floor implants.
PMCID: PMC3881509  PMID: 24455692
2.  Influence of 4% icodextrin solution on peritoneal tissue response and adhesion formation 
BMC Surgery  2013;13:34.
Postoperative peritoneal adhesion formation following abdominal surgery remains a relevant surgical problem. The application of soluble physico-chemical barriers like 4% icodextrin is one approach to protect the peritoneal surface from getting linked to adhesive scar. The aim of this study was to investigate the influence of 4% icodextrin on peritoneal tissue response both of visceral and parietal peritoneum, adhesion formation and wound healing.
40 rats were divided into two groups. After creation of an intraabdominal defect, either 4% icodextrin (Adept®) or sodium chloride was applied. Animals were sacrificed after 7 and 21 days. Adhesions were scored by an adhesion score. Furthermore, immunohistochemical investigations were conducted to determine the discrete influence of icodextrin on the parietal and visceral peritoneal tissue responses (CD68+ macrophages, CD3+ T-lymphocytes, vimentin for mesenchymal cells, HBME-1 for mesothelial cells, and as components of wound healing COX-2, C-myc, catenin).
Postoperative peritoneal adhesions were predominantly present in the sodium chloride group as compared to the icodextrin group (14/19 (74%) vs. 9/19 (47%); p = 0.048). The adhesion score however did not reveal any significant differences, (p = 0.614). Furthermore, the expression of vimentin in both the parietal and visceral peritoneum after 21 days was significantly lower in the icodextrin group than in the sodium chloride group (p = 0.038 and p = 0.028, respectively). No significant differences were observed for macrophages, lymphocytes, reperitonealisation or the expression of COX-2, C-myc or Catenin.
The intraperitoneal application of 4% icodextrin reduces adhesion formation in comparison to sodium chloride. 4% icodextrin solution reduces the inflammatory and mesenchymal infiltrate in the wounded area, thus improving the ratio of mesothel cells to mesenchymal infiltrate. As demonstrated, icodextrin is able to ameliorate the local tissue response. Further experimental studies would be done to elaborate the impact on the early response of the adaptive immune system, which may then trigger the subsequent wound healing and tissue repair.
PMCID: PMC3846168  PMID: 24020840
Postoperative peritoneal adhesions; Icodextrin; Adept; Inflammatory response; Peritoneal wound healing
3.  Tension of knotted surgical sutures shows tissue specific rapid loss in a rodent model 
BMC Surgery  2011;11:36.
Every surgical suture compresses the enclosed tissue with a tension that depends from the knotting force and the resistance of the tissue. The aim of this study was to identify the dynamic change of applied suture tension with regard to the tissue specific cutting reaction.
In rabbits we placed single polypropylene sutures (3/0) in skin, muscle, liver, stomach and small intestine. Six measurements for each single organ were determined by tension sensors for 60 minutes. We collected tissue specimens to analyse the connective tissue stability by measuring the collagen/protein content.
We identified three phases in the process of suture loosening. The initial rapid loss of the first phase lasts only one minute. It can be regarded as cutting through damage of the tissue. The percentage of lost tension is closely related to the collagen content of the tissue (r = -0.424; p = 0.016). The second phase is characterized by a slower decrease of suture tension, reflecting a tissue specific plastic deformation. Phase 3 is characterized by a plateau representing the remaining structural stability of the tissue. The ratio of remaining tension to initial tension of phase 1 is closely related to the collagen content of the tissue (r = 0.392; p = 0.026).
Knotted non-elastic monofilament sutures rapidly loose tension. The initial phase of high tension may be narrowed by reduction of the surgeons' initial force of the sutures' elasticity to those of the tissue. Further studies have to confirm, whether reduced tissue compression and less local damage permits improved wound healing.
PMCID: PMC3275509  PMID: 22188826
suture tension; cutting reaction; collagen; suture material; polypropylene; tension sensor
4.  In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides 
Surgical Endoscopy  2011;26(5):1468-1475.
Prosthetic mesh implants are widely used in hernia surgery. To show long-term mesh-related complications such as shrinkage or adhesions, a precise visualization of meshes and their vicinity in vivo is important. By supplementing mesh fibers with ferro particles, magnetic resonance imaging (MRI) can help to delineate the mesh itself. This study aimed to demonstrate and quantify time-dependent mesh shrinkage in vivo by MRI.
Polyvinylidenfluoride (PVDF) meshes with incorporated superparamagnetic iron oxides (SPIOs) were implanted as an abdominal wall replacement in 30 rats. On days 1, 7, 14, or 21, MRI was performed using a gradient echo sequence with repetition time (TR)/echo time (TE) of 50/4.6 and a flip angle of 20°. The length, width, and area of the device were measured on axial, coronal, and sagittal images, and geometric deformations were assessed by surgical explantation.
In all cases, the meshes were visualized and their area estimated by measuring the length and width of the mesh. The MRI presented a mean area shrinkage in vivo of 13% on day 7, 23% on day 14, and 23% on day 21. Postmortem measurements differed statistically from MRI, with a mean area shrinkage of 23% on day 7, 28% on day 14, and 30% on day 21. Ex vivo measurements of shrinkage showed in vivo measurements to be overestimated approximately 8%. Delineation of the mesh helped to show folding or adhesions close to the intestine.
Loading of surgical meshes with SPIOs allows their precise visualization during MRI and guarantees an accurate in vivo assessment of their shrinkage. The authors’ observation clearly indicates that shrinkage in vivo is remarkably less than that shown by illustrated explantation measurements. The use of MRI with such meshes could be a reliable technique for checking on proper operation of implanted meshes and showing related complications, obviating the need for exploratory open surgical revision.
PMCID: PMC3327833  PMID: 22179447
Magnetic resonance imaging; SPIO; Mesh implant; Shrinkage
5.  Formation of translational risk score based on correlation coefficients as an alternative to Cox regression models for predicting outcome in patients with NSCLC 
Personalised cancer therapy, such as that used for bronchial carcinoma (BC), requires treatment to be adjusted to the patient's status. Individual risk for progression is estimated from clinical and molecular-biological data using translational score systems. Additional molecular information can improve outcome prediction depending on the marker used and the applied algorithm. Two models, one based on regressions and the other on correlations, were used to investigate the effect of combining various items of prognostic information to produce a comprehensive score. This was carried out using correlation coefficients, with options concerning a more plausible selection of variables for modelling, and this is considered better than classical regression analysis.
Clinical data concerning 63 BC patients were used to investigate the expression pattern of five tumour-associated proteins. Significant impact on survival was determined using log-rank tests. Significant variables were integrated into a Cox regression model and a new variable called integrative score of individual risk (ISIR), based on Spearman's correlations, was obtained.
High tumour stage (TNM) was predictive for poor survival, while CD68 and Gas6 protein expression correlated with a favourable outcome. Cox regression model analysis predicted outcome more accurately than using each variable in isolation, and correctly classified 84% of patients as having a clear risk status. Calculation of the integrated score for an individual risk (ISIR), considering tumour size (T), lymph node status (N), metastasis (M), Gas6 and CD68 identified 82% of patients as having a clear risk status.
Combining protein expression analysis of CD68 and GAS6 with T, N and M, using Cox regression or ISIR, improves prediction. Considering the increasing number of molecular markers, subsequent studies will be required to validate translational algorithms for the prognostic potential to select variables with a high prognostic power; the use of correlations offers improved prediction.
PMCID: PMC3156745  PMID: 21794149
6.  Evaluation of the collaborative network of highly correlating skin proteins and its change following treatment with glucocorticoids 
Glucocorticoids (GC) represent the core treatment modality for many inflammatory diseases. Its mode of action is difficult to grasp, not least because it includes direct modulation of many components of the extracellular matrix as well as complex anti-inflammatory effects. Protein expression profile of skin proteins is being changed with topical application of GC, however, the knowledge about singular markers in this regard is only patchy and collaboration is ill defined.
Scar formation was observed under different doses of GC, which were locally applied on the back skin of mice (1 to 3 weeks). After euthanasia we analyzed protein expression of collagen I and III (picrosirius) in scar tissue together with 16 additional protein markers, which are involved in wound healing, with immunhistochemistry. For assessing GC's effect on co-expression we compared our results with a model of random figures to estimate how many significant correlations should be expected by chance.
GC altered collagen and protein expression with distinct results in different areas of investigation. Most often we observed a reduced expression after application of low dose GC. In the scar infiltrate a multivariate analysis confirmed the significant impact of both GC concentrations. Calculation of Spearman's correlation coefficient similarly resulted in a significant impact of GC, and furthermore, offered the possibility to grasp the entire interactive profile in between all variables studied. The biological markers, which were connected by significant correlations could be arranged in a highly cross-linked network that involved most of the markers measured. A marker highly cross-linked with more than 3 significant correlations was indicated by a higher variation of all its correlations to the other variables, resulting in a standard deviation of > 0.2.
In addition to immunohistochemical analysis of single protein markers multivariate analysis of co-expressions by use of correlation coefficients reveals the complexity of biological relationships and identifies complex biological effects of GC on skin scarring. Depiction of collaborative clusters will help to understand functional pathways. The functional importance of highly cross-linked proteins will have to be proven in subsequent studies.
PMCID: PMC2901312  PMID: 20509951
7.  Risk factors for early recurrence after inguinal hernia repair 
BMC Surgery  2009;9:18.
Family history, male gender and age are significant risk factors for inguinal hernia disease. Family history provides evidence for a genetic trait and could explain early recurrence after inguinal hernia repair despite technical advance at least in a subgroup of patients. This study evaluates if age and family history can be identified as risk factors for early recurrence after primary hernia repair.
We performed an observational cohort study for 75 patients having at least two recurrent hernias. The impact of age, gender and family history on the onset of primary hernias, age at first recurrence and recurrence rates was investigated.
44% (33/75) of recurrent hernia patients had a family history and primary as well as recurrent hernias occurred significantly earlier in this group (p = 0.04). The older the patients were at onset the earlier they got a recurrent hernia. Smoking could be identified as on additional risk factor for early onset of hernia disease but not for hernia recurrence.
Our data reveal an increased incidence of family history for recurrent hernia patients when compared with primary hernia patients. Patients with a family history have their primary hernias as well as their recurrence at younger age then patients without a family history. Though recurrent hernia has to be regarded as a disease caused by multiple factors, a family history may be considered as a criterion to identify the risk for recurrence before the primary operation.
PMCID: PMC2795732  PMID: 20003183
8.  Epidermal growth factor receptor (EGFR) is transcriptionally induced by the Y-box binding protein-1 (YB-1) and can be inhibited with Iressa in basal-like breast cancer, providing a potential target for therapy 
Basal-like breast cancers (BLBCs) are very aggressive, and present serious clinical challenges as there are currently no targeted therapies available. We determined the regulatory role of Y-box binding protein-1 (YB-1) on epidermal growth factor receptor (EGFR) overexpression in BLBC, and the therapeutic potential of inhibiting EGFR. We pursued this in light of our recent work showing that YB-1 induces the expression of EGFR, a new BLBC marker.
Primary tumour tissues were evaluated for YB1 protein expression by immunostaining tissue microarrays, while copy number changes were assessed by comparative genomic hybridization (CGH). The ability of YB-1 to regulate EGFR was evaluated using luciferase reporter, chromatin immunoprecipitation (ChIP) and gel shift assays. The impact of Iressa on monolayer cell growth was measured using an ArrayScan VTI high-throughput analyser to count cell number, and colony formation in soft agar was used to measure anchorage-independent growth.
YB-1 (27/37 or 73% of cases, P = 3.899 × 10-4) and EGFR (20/37 or 57.1% of cases, P = 9.206 × 10-12) are expressed in most cases of BLBC. However, they are not typically amplified in primary BLBC, suggesting overexpression owing to transcriptional activation. In support of this, we demonstrate that YB-1 promotes EGFR reporter activity. YB-1 specifically binds the EGFR promoter at two different YB-1-responsive elements (YREs) located at -940 and -968 using ChIP and gel shift assays in a manner that is dependent on the phosphorylation of S102 on YB-1. Inhibiting EGFR with Iressa suppressed the growth of SUM149 cells by ~40% in monolayer, independent of mutations in the receptor. More importantly anchorage-independent growth of BLBC cell lines was inhibited with combinations of Iressa and YB-1 suppression.
We have identified for the first time a causal link for the expression of EGFR in BLBC through the induction by YB-1 where it binds specifically to two distinguished YREs. Finally, inhibition of EGFR in combination with suppression of YB-1 presents a potential opportunity for therapy in BLBC.
PMCID: PMC2242657  PMID: 17875215
9.  Hernia fibroblasts lack β-estradiol induced alterations of collagen gene expression 
BMC Cell Biology  2006;7:36.
Estrogens are reported to increase type I and type III collagen deposition and to regulate Metalloproteinase 2 (MMP-2) expression. These proteins are reported to be dysregulated in incisional hernia formation resulting in a significantly decreased type I to III ratio. We aimed to evaluate the β-estradiol mediated regulation of type I and type III collagen genes as well as MMP-2 gene expression in fibroblasts derived from patients with or without history of recurrent incisional hernia disease. We compared primary fibroblast cultures from male/female subjects without/without incisional hernia disease.
Incisional hernia fibroblasts (IHFs) revealed a decreased type I/III collagen mRNA ratio. Whereas fibroblasts from healthy female donors responded to β-estradiol, type I and type III gene transcription is not affected in fibroblasts from males or affected females. Furthermore β-estradiol had no influence on the impaired type I to III collagen ratio in fibroblasts from recurrent hernia patients.
Our results suggest that β-estradiol does not restore the imbaired balance of type I/III collagen in incisional hernia fibroblasts. Furthermore, the individual was identified as an independent factor for the β-estradiol induced alterations of collagen gene expression. The observation of gender specific β-estradiol-dependent changes of collagen gene expression in vitro is of significance for future studies of cellular response.
PMCID: PMC1594569  PMID: 17010202
10.  Light weight meshes in incisional hernia repair 
Incisional hernias remain one of the most common surgical complications with a long-term incidence of 10–20%. Increasing evidence of impaired wound healing in these patients supports routine use of an open prefascial, retromuscular mesh repair. Basic pathophysiologic principles dictate that for a successful long-term outcome and prevention of recurrence, a wide overlap underneath healthy tissue is required. Particularly in the neighborhood of osseous structures, only retromuscular placement allows sufficient subduction of the mesh by healthy tissue of at least 5 cm in all directions. Preparation must take into account the special anatomic features of the abdominal wall, especially in the area of the Linea alba and Linea semilunaris. Polypropylene is the material widely used for open mesh repair. New developments have led to low-weight, large-pore polypropylene prostheses, which are adjusted to the physiological requirements of the abdominal wall and permit proper tissue integration. These meshes provide the possibility of forming a scar net instead of a stiff scar plate and therefore help to avoid former known mesh complications.
PMCID: PMC2999769  PMID: 21187980
Incisional hernia; mesh; polypropylene; recurrence
11.  Hernia recurrence as a problem of biology and collagen 
Usually an abdominal wall hernia is regarded as a mechanical problem with a local defect which has to be closed by technical means. Despite the introduction of several therapeutic improvements, recurrent hernias still appear in 10–15%. Therefore, reasons for a recurrence are discussed in a more fundamental way. It is assumed that a failure mainly depends on the quality of the repair. Correspondingly, in principle, the close causal relationship between the technical component and its failure during time is reflected by an s-shaped outcome curve. In contrast, the configuration of the outcome curve changes markedly if a breakdown is caused by numerous components. Then, the superposition of all incidence curves inevitably leads to a linear decline of the outcome curve without any s-shaped deformation. Regarding outcome curves after hernia repair, the cumulative incidences for recurrences of both incisional and inguinal hernia show a linear rise over years. Considering the configuration of outcome curves of patients with hernia disease, it may therefore be insufficient to explain a recurrence just by a failing technical repair. Rather, biological reasons should be suspected, such as a defective wound healing with impaired scarring process. Recent molecular-biological findings provide increasing evidence of underlying biochemical alterations in patients with recurrent hernia. Until predicting markers to identify patients with an impaired wound healing are available and considering the formation of insufficient scar as the underlying disease, the consequences for every surgical repair should be a supplementary reinforcement with nonabsorbable alloplastic nets as flat meshes with an extensive overlap.
PMCID: PMC2999776  PMID: 21187987
Biology; collagen; hernia; network; recurrence; wound healing
12.  Missing effects of zinc in a porcine model of recurrent endotoxemia 
BMC Surgery  2005;5:22.
Chronic human sepsis often is characterised by the compensatory anti-inflammatory response syndrome (CARS). During CARS, anti-inflammatory cytokines depress the inflammatory response leading to secondary and opportunistic infections. Proved in vitro as well as in vivo, zinc's pro-inflammatory effect might overcome this depression.
We used the model of porcine LPS-induced endotoxemia established by Klosterhalfen et al. 10 pigs were divided into two groups (n = 5). Endotoxemia was induced by recurrent intravenous LPS-application (1.0 μg/kg E. coli WO 111:B4) at hours 0, 5, and 12. At hour 10, each group received an intravenous treatment (group I = saline, group II = 5.0 mg/kg elementary zinc). Monitoring included hemodynamics, blood gas analysis, and the thermal dilution technique for the measurement of extravascular lung water and intrapulmonary shunt. Plasma concentrations of IL-6 and TNF-alpha were measured by ELISA. Morphology included weight of the lungs, width of the alveolar septae, and rate of paracentral liver necrosis.
Zinc's application only trended to partly improve the pulmonary function. Compared to saline, significant differences were very rare. IL-6 and TNF-alpha were predominately measured higher in the zinc group. Again, significance was only reached sporadically. Hemodynamics and morphology revealed no significant differences at all.
The application of zinc in this model of recurrent endotoxemia is feasible and without harmful effects. However, a protection or restoration of clinical relevance is not evident in our setting. The pulmonary function just trends to improve, cytokine liberation is only partly activated, hemodynamics and morphology were not influenced. Further pre-clinical studies have to define zinc's role as a therapeutic tool during CARS.
PMCID: PMC1277829  PMID: 16242024
13.  A role for the collagen I/III and MMP-1/-13 genes in primary inguinal hernia? 
Abnormal collagen metabolism is thought to play an important role in the development of primary inguinal hernia. This is underlined by detection of altered collagen metabolism and structural changes of the tissue in patients with primary inguinal hernia. However, it is still unknown whether these alterations reflect a basic dysfunction of the collagen synthesis, or of collagen degradation.
In the present study, we analysed type I and type III procollagen messenger ribonucleic acid (mRNA) and MMP-1 and MMP-13 mRNA in cultured fibroblasts from the skin of patients with primary inguinal hernia, and from patients without hernia (controls) by reverse transcription polymerase chain reaction (RT-PCR) and Northern Blot.
The results indicated that the ratio of type I to type III procollagen mRNA was decreased in patients with primary hernia, showing significant differences as compared to controls (p = 0.01). This decrease was mainly due to the increase of type III procollagen mRNA. Furthermore, RT-PCR analysis revealed that the expression of MMP-1 mRNA in patients with primary hernia is equivalent to that of controls (p > 0.05). In addition, MMP-13 mRNA is expressed neither in patients with primary hernia nor in controls.
We concluded that abnormal change of type I and type III collagen mRNAs contribute to the development of primary inguinal hernia, whereas the expressions of MMP-1 and MMP-13 mRNA appears not to be involved in the development of primary inguinal hernia. Thus, the knowledge on the transcriptional regulation of collagen in patients with primary inguinal hernia may help to understand the pathogenesis of primary inguinal hernia, and implies new therapeutic strategies for this disease.
PMCID: PMC65699  PMID: 11872152

Results 1-13 (13)