PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Role of Pathogenicity Determinant Protein C (PdpC) in Determining the Virulence of the Francisella tularensis Subspecies tularensis SCHU 
PLoS ONE  2014;9(2):e89075.
Francisella tularensis subspecies tularensis, the etiological agent of tularemia, is highly pathogenic to humans and animals. However, the SCHU strain of F. tularensis SCHU P0 maintained by passaging in artificial media has been found to be attenuated. To better understand the molecular mechanisms behind the pathogenicity of F. tularensis SCHU, we attempted to isolate virulent bacteria by serial passages in mice. SCHU P5 obtained after 5th passages in mice remained avirulent, while SCHU P9 obtained after 9th passages was completely virulent in mice. Moreover, SCHU P9 grew more efficiently in J774.1 murine macrophages compared with that in the less pathogenic SCHU P0 and P5. Comparison of the nucleotide sequences of the whole genomes of SCHU P0, P5, and P9 revealed only 1 nucleotide difference among P0, P5 and P9 in 1 of the 2 copies of pathogenicity determinant protein C (pdpC) gene. An adenine residue deletion was observed in the pdpC1 gene of SCHU P0, P5, and P9 and in the pdpC2 gene of SCHU P0, and P5, while P9 was characterized by the wild type pdpC2 gene. Thus, SCHU P0 and P5 expressed only truncated forms of PdpC protein, while SCHU P9 expressed both wild type and truncated versions. To validate the pathogenicity of PdpC, both copies of the pdpC gene in SCHU P9 have been inactivated by Targetron mutagenesis. SCHU P9 mutants with inactivated pdpC gene showed low intracellular growth in J774.1 cells and did not induce severe disease in experimentally infected mice, while virulence of the mutants was restored by complementation with expression of the intact PdpC. These results demonstrate that PdpC is crucial in determining the virulence of F. tularensis SCHU.
doi:10.1371/journal.pone.0089075
PMCID: PMC3928404  PMID: 24558472
2.  Detection of Francisella tularensis-Specific Antibodies in Patients with Tularemia by a Novel Competitive Enzyme-Linked Immunosorbent Assay 
A novel competitive enzyme-linked immunosorbent assay (cELISA) was developed and evaluated for detection of antibodies against Francisella tularensis in humans. The assay is based on the ability of serum antibodies to inhibit the binding of monoclonal antibodies (MAbs) directed against F. tularensis lipopolysaccharide antigens. The assay was evaluated using serum samples of tularemia patients, inactivated F. tularensis-immunized rabbits, and F. tularensis-infected mice. Antibodies against F. tularensis were successfully detected in serum samples of tularemia patients as well as the immunized and infected animals. The cELISA method was compared to indirect ELISA (iELISA) and the commonly used microagglutination test (MA) using serum samples of 19 tularemia patients and 50 healthy individuals. The sensitivity and specificity of cELISA were 93.9 and 96.1%, respectively, in comparison to the iELISA. MA was less sensitive than cELISA with a sensitivity and specificity of only 81.8 and 98.0%, respectively. A high degree of correlation (R2 = 0.8226) was observed between cELISA and iELISA results. The novel cELISA developed in this study appears to be highly sensitive and specific for serodiagnosis of human tularemia. The potential of the MAb-based cELISA to be used in both human and animal samples emphasizes its usefulness for serological survey of tularemia among multiple animal species.
doi:10.1128/CVI.00516-12
PMCID: PMC3535769  PMID: 23114700
3.  Altered specificity of single-chain antibody fragments bound to pandemic H1N1-2009 influenza virus after conversion of the phage-bound to the soluble form 
BMC Research Notes  2012;5:483.
Background
In 2009, a novel influenza A/H1N1 virus (H1N1pdm) quickly spread worldwide and co-circulated with then-existing seasonal H1N1 virus (sH1N1). Distinguishing between these 2 viruses was necessary to better characterize the epidemiological properties of the emergent virus, including transmission patterns, pathogenesis, and anti-influenza drug resistance. This situation prompted us to develop a point-of-care virus differentiation system before entering the 2009–2010 influenza season. Aiming to establish H1N1pdm-specific detection tools rapidly, we employed phage display libraries to select H1N1pdm-specific single-chain variable fragments (scFvs).
Findings
Human single-fold scFv libraries (Tomlinson I + J) underwent selection for the ability to bind H1N1pdm virus particles. Three rounds of panning brought 1152 phage-bound scFvs, of which 58 clones reacted with H1N1pdm specifically or preferentially over sH1N1 in an enzyme-linked immunosorbent assay (ELISA). After conversion of the scFvs to soluble form, 7 clones demonstrating high/stable expression were finally obtained. However, all the soluble scFvs except No. 29 were found to have lost their specificity/preference for H1N1pdm in ELISA. The specificity/preference of No. 29 was also confirmed by immunofluorescence assay and immunoprecipitation, and the viral nucleoprotein was identified by ELISA as its target protein. The change in specificity associated with scFv conversion from phage-bound to soluble form could be due to loss of phage scaffold pIII protein, which likely provides structural support for the scFv antigen-binding site. It is also possible that the similar antigenic properties of H1N1pdm and sH1N1 led to the observed alterations in scFv specificity.
Discussion
Using a phage display library, we obtained 7 soluble scFv clones reactive against H1N1pdm; however, only 1 showed specificity/preference toward H1N1pdm. Our results confirmed that using phage display libraries was highly advantageous for the rapid development of molecules to detect target antigens. However, our results also indicated that this strategy might not have been effective for selecting H1N1pdm-specific antibodies during the 2009 pandemic, where the co-circulating sH1N1 virus shared similar antigenic properties. This suggests that it might be advisable to use a synthetic scFv phage display library by strategically considering the characteristics of target antigens and the potential situations.
doi:10.1186/1756-0500-5-483
PMCID: PMC3492028  PMID: 22943792
Influenza; Pandemic; Diagnosis; Single-chain variable fragment (scFv); Altered specificity
4.  Discrimination of Antibody to Herpes B Virus from Antibody to Herpes Simplex Virus Types 1 and 2 in Human and Macaque Sera▿  
The antigenic cross-reactive characteristics of herpes B virus and herpes simplex virus (HSV) type 1 (HSV-1) and HSV-2 are responsible for false-positive diagnoses by serological assays in humans and macaques. In the present study, we developed a fluorometric indirect enzyme-linked immunosorbent assay (ELISA) with recombinant herpes B virus glycoprotein D (gD) and HSV-1 and HSV-2 gG (gG-1 and gG-2, respectively) to discriminate between the three primate herpesvirus infections. The secreted form of gD, gDdTM, was used to detect antibody to herpes B virus gD. Sera positive for herpes B virus, HSV-1, and HSV-2 showed specific reactions to gD, gG-1, and gG-2, respectively. Sera collected from humans and rhesus macaques were investigated for the presence of antibodies to the recombinant proteins of the three herpesviruses. The results suggested that the approach is able to discriminate between herpes B virus and HSV infections. The ELISA was also found to be able to detect infections with multiple primate herpesviruses and may have the potential to identify a subsequent infection in individuals that have already been infected with another herpesvirus. In addition, we found evidence of a greater cross-reactivity of herpes B virus with HSV-1 than with HSV-2. It is suggested that the ELISA with the recombinant antigens is useful not only for the serodiagnosis of primate herpesvirus infections but also for elucidation of the seroprevalence of herpesviruses in humans and primates.
doi:10.1128/JCM.00342-07
PMCID: PMC2224259  PMID: 17989200
5.  Preparation of Monoclonal Antibodies for Detection and Identification of Francisella tularensis▿  
Monoclonal antibodies (MAbs) against Francisella tularensis were obtained. Three MAbs specifically reacted with F. tularensis, while four MAbs reacted with other members of the genus Francisella as well. Fluorescent isothiocyanate-conjugated MAbs unequivocally stained bacterial cells in specimens from experimentally infected mice. Two MAbs agglutinated F. tularensis antigen in the agglutination tests. These MAbs should improve methods for detection and identification of F. tularensis.
doi:10.1128/CVI.00057-06
PMCID: PMC1797713  PMID: 17121981
6.  Recombinant Wild-Type and Edmonston Strain Measles Viruses Bearing Heterologous H Proteins: Role of H Protein in Cell Fusion and Host Cell Specificity 
Journal of Virology  2002;76(10):4891-4900.
Wild-type measles virus (MV) isolated from B95a cells has a restricted host cell specificity and hardly replicates in Vero cells, whereas the laboratory strain Edmonston (Ed) replicates in a variety of cell types including Vero cells. To investigate the role of H protein in the differential MV host cell specificity and cell fusion activity, H proteins of wild-type MV (IC-B) and Ed were coexpressed with the F protein in Vero cells. Cell-cell fusion occurred in Vero cells when Ed H protein, but not IC-B H protein, was expressed. To analyze the role of H protein in the context of viral infection, a recombinant IC-B virus bearing Ed H protein (IC/Ed-H) and a recombinant Ed virus bearing IC-B H protein (Ed/IC-H) were generated from cloned cDNAs. IC/Ed-H replicated efficiently in Vero cells and induced small syncytia in Vero cells, indicating that Ed H protein conferred replication ability in Vero cells on IC/Ed-H. On the other hand, Ed/IC-H also replicated well in Vero cells and induced small syncytia, although parental Ed induced large syncytia in Vero cells. These results indicated that an MV protein(s) other than H protein was likely involved in determining cell fusion and host cell specificity of MV in the case of our recombinants. SLAM (CDw150), a recently identified cellular receptor for wild-type MV, was not expressed in Vero cells, and a monoclonal antibody against CD46, a cellular receptor for Ed, did not block replication or syncytium formation of Ed/IC-H in Vero cells. It is therefore suggested that Ed/IC-H entered Vero cells through another cellular receptor.
doi:10.1128/JVI.76.10.4891-4900.2002
PMCID: PMC136141  PMID: 11967306
7.  Detection of B Virus Antibody in Monkey Sera Using Glycoprotein D Expressed in Mammalian Cells 
Journal of Clinical Microbiology  2001;39(9):3025-3030.
The gene encoding glycoprotein D (gD) of the monkey B virus (Cercopithecine herpesvirus 1) was cloned into a mammalian expression vector, pcDNA3.1(−), and the recombinant plasmid DNA was transfected into COS7 cells. The expression of gD in transfected COS7 cells was detected by indirect immunofluorescence assay or radioimmunoprecipitation analysis (RIPA). Although the expressed gD protein was revealed to react well with sera from monkeys naturally infected with B virus by RIPA, some sera showed reduced reactivity when analyzed by the Western blotting (WB) method. Some sera also showed relatively high background when the WB was performed using gD expressed from recombinant plasmid. The mutant gD protein lacking the transmembrane domain (TM) and cytoplasmic tail (CT) was next expressed in COS7 cells. The mutant protein was secreted into culture medium without apparent loss of the antigenicity. Using the secretory form of the gD protein as antigen in dot blot analysis, sera from B virus-infected monkeys were shown to react with the mutant protein without nonspecific reaction. Since the recombinant gD or its derivative lacking TM and CT could be expressed in mammalian cells with proper antigenicity, these antigens appeared to be useful for serological detection of B virus infection in monkeys.
doi:10.1128/JCM.39.9.3025-3030.2001
PMCID: PMC88291  PMID: 11526123

Results 1-7 (7)