Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Okutani, kiko")
1.  Altered specificity of single-chain antibody fragments bound to pandemic H1N1-2009 influenza virus after conversion of the phage-bound to the soluble form 
BMC Research Notes  2012;5:483.
In 2009, a novel influenza A/H1N1 virus (H1N1pdm) quickly spread worldwide and co-circulated with then-existing seasonal H1N1 virus (sH1N1). Distinguishing between these 2 viruses was necessary to better characterize the epidemiological properties of the emergent virus, including transmission patterns, pathogenesis, and anti-influenza drug resistance. This situation prompted us to develop a point-of-care virus differentiation system before entering the 2009–2010 influenza season. Aiming to establish H1N1pdm-specific detection tools rapidly, we employed phage display libraries to select H1N1pdm-specific single-chain variable fragments (scFvs).
Human single-fold scFv libraries (Tomlinson I + J) underwent selection for the ability to bind H1N1pdm virus particles. Three rounds of panning brought 1152 phage-bound scFvs, of which 58 clones reacted with H1N1pdm specifically or preferentially over sH1N1 in an enzyme-linked immunosorbent assay (ELISA). After conversion of the scFvs to soluble form, 7 clones demonstrating high/stable expression were finally obtained. However, all the soluble scFvs except No. 29 were found to have lost their specificity/preference for H1N1pdm in ELISA. The specificity/preference of No. 29 was also confirmed by immunofluorescence assay and immunoprecipitation, and the viral nucleoprotein was identified by ELISA as its target protein. The change in specificity associated with scFv conversion from phage-bound to soluble form could be due to loss of phage scaffold pIII protein, which likely provides structural support for the scFv antigen-binding site. It is also possible that the similar antigenic properties of H1N1pdm and sH1N1 led to the observed alterations in scFv specificity.
Using a phage display library, we obtained 7 soluble scFv clones reactive against H1N1pdm; however, only 1 showed specificity/preference toward H1N1pdm. Our results confirmed that using phage display libraries was highly advantageous for the rapid development of molecules to detect target antigens. However, our results also indicated that this strategy might not have been effective for selecting H1N1pdm-specific antibodies during the 2009 pandemic, where the co-circulating sH1N1 virus shared similar antigenic properties. This suggests that it might be advisable to use a synthetic scFv phage display library by strategically considering the characteristics of target antigens and the potential situations.
PMCID: PMC3492028  PMID: 22943792
Influenza; Pandemic; Diagnosis; Single-chain variable fragment (scFv); Altered specificity
2.  Genome-Wide Single Nucleotide Polymorphism Typing Method for Identification of Bacillus anthracis Species and Strains among B. cereus Group Species ▿ †  
Journal of Clinical Microbiology  2010;48(8):2821-2829.
As an issue of biosecurity, species-specific genetic markers have been well characterized. However, Bacillus anthracis strain-specific information is currently not sufficient for traceability to identify the origin of the strain. By using genome-wide screening using short read mapping, we identified strain-specific single nucleotide polymorphisms (SNPs) among B. anthracis strains including Japanese isolates, and we further developed a simplified 80-tag SNP typing method for the primary investigation of traceability. These 80-tag SNPs were selected from 2,965 SNPs on the chromosome and the pXO1 and pXO2 plasmids from a total of 19 B. anthracis strains, including the available genome sequences of 17 strains in the GenBank database and 2 Japanese isolates that were sequenced in this study. Phylogenetic analysis based on 80-tag SNP typing showed a higher resolution power to discriminate 12 Japanese isolates rather than the 25 loci identified by multiple-locus variable-number tandem-repeat analysis (MLVA). In addition, the 80-tag PCR testing enabled the discrimination of B. anthracis from other B. cereus group species, helping to identify whether a suspected sample originates from the intentional release of a bioterrorism agent or environmental contamination with a virulent agent. In conclusion, 80-tag SNP typing can be a rapid and sufficient test for the primary investigation of strain origin. Subsequent whole-genome sequencing will reveal apparent strain-specific genetic markers for traceability of strains following an anthrax outbreak.
PMCID: PMC2916593  PMID: 20554827
3.  Genomewide Screening for Novel Genetic Variations Associated with Ciprofloxacin Resistance in Bacillus anthracis▿ †  
Fluoroquinolone (FQ) resistance of Bacillus anthracis is a serious concern in the fields of biodefense and bioterrorism since FQs are very effective antibiotics and are recommended as first-line treatment against this lethal bacterium. In this study, we obtained 2 strains of B. anthracis showing resistance or intermediate resistance to ciprofloxacin (CIP) by a stepwise selection procedure with increasing CIP concentrations. Fifteen genetic variations were identified between the parental and CIP-resistant strains by next-generation sequencing. Nonsynonymous mutations in the quinolone resistance-determining region (QRDR) of type II DNA topoisomerase were identified in the resistant strain but not in the intermediate-resistant strain. The GBAA0834 (TetR-type transcriptional regulator) locus was also revealed to be a novel “mutation hot spot” that leads to the increased expression of multidrug efflux systems for CIP resistance. As an initial step of CIP resistance in B. anthracis, such disruptive mutations of GBAA0834 appear to be more easily acquired than those in an essential gene, such as that encoding type II DNA topoisomerase. Such an intermediate-resistant phenotype could increase a cell population under CIP-selective pressure and might promote the emergence of highly resistant isolates. Our findings reveal, in addition to QRDR, crucial genetic targets for the investigation of intermediate resistance of B. anthracis to FQs.
PMCID: PMC2897295  PMID: 20385868
4.  Bicarbonate Ion Stimulates the Expression of Locus of Enterocyte Effacement-Encoded Genes in Enterohemorrhagic Escherichia coli O157:H7  
Infection and Immunity  2002;70(7):3500-3509.
Enterohemorrhagic Escherichia coli (EHEC) strains adhere to the intestinal mucosa and produce an attaching and effacing (A/E) lesion. Most of the genes required to produce A/E lesions are thought to be encoded by the 36-kb pathogenicity island termed the locus for enterocyte effacement (LEE). Although the mechanisms underlying the bacterial adherence, including the genes involved, are still poorly understood, the preferential adherence phenotype of EHEC is thought to depend on the nature of the genes and/or the response of these genes to changes in environmental conditions. To explore the environmental factors affecting EHEC adherence, we used an O157:H7 strain and investigated the optimal growth conditions for its adherence to Caco-2 cells. We observed that EHEC grown in Dulbecco's modified Eagle's medium (DMEM) adhered more efficiently to Caco-2 cells than EHEC grown in Luria-Bertani (LB) broth. Among the components of DMEM, only NaHCO3 was found to remarkably stimulate bacterial adherence. When bacteria were grown in LB broth containing NaHCO3, the production of intimin, Tir, EspA, and EspB was greatly enhanced compared with the production in LB broth. Indeed, the transcription of ler required for LEE-encoded gene expression was promoted in response to the concentration of NaHCO3 in LB broth. Since the concentration of NaHCO3 in the lower intestinal tract has been shown to be relatively high compared with that in the upper small intestine, our results may imply that NaHCO3 is an important signaling factor for promoting colonization of EHEC in the lower intestinal tract in humans.
PMCID: PMC128104  PMID: 12065489
5.  Isolation and Characterization of Mini-Tn5Km2 Insertion Mutants of Enterohemorrhagic Escherichia coli O157:H7 Deficient in Adherence to Caco-2 Cells 
Infection and Immunity  2000;68(10):5943-5952.
Adherence of enterohemorrhagic Escherichia coli (EHEC) to intestinal epithelium is essential for initiation of the infection. To identify genes involved in adherence, an EHEC O157:H7 strain (O157Sakai) was mutagenized by mini-Tn5Km2, where Km refers to kanamycin resistance, and 4,677 insertion mutants were screened for their ability to form microcolonies (MC) on Caco-2 cells. The less adherent mutants were divided into three groups: those with no adherent ability (designated as class 1 mutants, n = 10), those less adherent than the wild type (class 2 mutants, n = 16), and those unable to form MC but which adhered in a diffuse manner (class 3 mutants, n = 1). The sites of insertion in class 1 mutants were all found within genes of the locus for enterocyte effacement (LEE) thought to be required for type III protein secretion. Indeed, the class 1 mutants failed to secrete type III secreted proteins such as EspA and Tir into the culture medium. The insertions in class 2 mutants were outside the LEE, and all the mutants except one were able to secrete type III proteins into the culture medium. The class 3 mutant had the insertion in the tir gene in the LEE and was deficient in Tir and intimin expression, suggesting that in the absence of intimin-Tir, O157Sakai can still adhere to Caco-2 cells but in a diffused manner. This was confirmed by construction of a nonpolar eae (encoding intimin) mutant. Examination of the eae mutant together with O157Sakai and one of the class 1 mutants for the ability to form MC revealed that EHEC initially adhered diffusely at 1.5 h after infection. Following washing out of the nonadherent bacteria, while wild-type EHEC bacteria developed MC for another 2 to 3 h on Caco-2 cells, the eae mutant diffusely adhered throughout the infection without forming MC. MC with O157Sakai but not the diffusely adherent eae mutant could evoke F-actin condensation beneath the bacterium. Our results suggest that EHEC encodes additional adherence-associated loci and that the type III secreted proteins are involved in the initial diffuse adherence, while the intimin-Tir interaction is required for the subsequent development of MC.
PMCID: PMC101558  PMID: 10992506

Results 1-5 (5)