Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Males and Females Contribute Unequally to Offspring Genetic Diversity in the Polygynandrous Mating System of Wild Boar 
PLoS ONE  2014;9(12):e115394.
The maintenance of genetic diversity across generations depends on both the number of reproducing males and females. Variance in reproductive success, multiple paternity and litter size can all affect the relative contributions of male and female parents to genetic variation of progeny. The mating system of the wild boar (Sus scrofa) has been described as polygynous, although evidence of multiple paternity in litters has been found. Using 14 microsatellite markers, we evaluated the contribution of males and females to genetic variation in the next generation in independent wild boar populations from the Iberian Peninsula and Hungary. Genetic contributions of males and females were obtained by distinguishing the paternal and maternal genetic component inherited by the progeny. We found that the paternally inherited genetic component of progeny was more diverse than the maternally inherited component. Simulations showed that this finding might be due to a sampling bias. However, after controlling for the bias by fitting both the genetic diversity in the adult population and the number of reproductive individuals in the models, paternally inherited genotypes remained more diverse than those inherited maternally. Our results suggest new insights into how promiscuous mating systems can help maintain genetic variation.
PMCID: PMC4277350  PMID: 25541986
2.  Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa) 
BMC Research Notes  2012;5:479.
The wild boar (Sus scrofa) is among the most widespread mammal species throughout the old world. Presently, studies concerning microsatellites in domestic pigs and wild boars have been carried out in order to investigate domestication, social behavior and general diversity patterns among either populations or breeds. The purpose of the current study is to develop a robust set of microsatellites markers for parentage analyses and individual identification.
A set of 14 previously reported microsatellites markers have been optimized and tested in three populations from Hungary, Portugal and Spain, in a total of 167 samples. The results indicate high probabilities of exclusion (0.99999), low probability of identity (2.0E-13 – 2.5E-9) and a parentage assignment of 100%.
Our results demonstrate that this set of markers is a useful and efficient tool for the individual identification and parentage assignment in wild boars.
PMCID: PMC3475110  PMID: 22943565
Sus scrofa; Parentage assignment; Individual identification; Microsatellite markers; Wild boar
3.  Stronger Sexual Selection in Warmer Waters: The Case of a Sex Role Reversed Pipefish 
PLoS ONE  2012;7(8):e44251.
In order to answer broader questions about sexual selection, one needs to measure selection on a wide array of phenotypic traits, simultaneously through space and time. Nevertheless, studies that simultaneously address temporal and spatial variation in reproduction are scarce. Here, we aimed to investigate the reproductive dynamics of a cold-water pipefish simultaneously through time (encompassing variation within each breeding cycle and as individuals grow) and space (by contrasting populations experiencing distinct water temperature regimes) in order to test hypothesized differences in sexual selection. Even though the sampled populations inhabited locations with very different water temperature regimes, they exhibited considerable similarities in reproductive parameters. The most striking was the existence of a well-defined substructure in reproductive activity, where larger individuals reproduce for longer periods, which seemed dependent on a high temperature threshold for breeding rather than on the low temperatures that vary heavily according to latitude. Furthermore, the perceived disparities among populations, such as size at first reproduction, female reproductive investment, or degree of sexual size dimorphism, seemed dependent on the interplay between seawater temperature and the operational sex ratio (OSR). Contrary to our expectations of an enhanced opportunity for sexual selection in the north, we found the opposite: higher female reproductive investment coupled with increased sexual size dimorphism in warmer waters, implying that a prolonged breeding season does not necessarily translate into reduced sexual selection pressure. In fact, if the limited sex has the ability to reproduce either continuously or recurrently during the entire breeding season, an increased opportunity for sexual selection might arise from the need to compete for available partners under strongly biased OSRs across protracted breeding seasons. A more general discussion on the effects of climate change in the pressure of sexual selection is also presented.
PMCID: PMC3428351  PMID: 22952940

Results 1-3 (3)