Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Role of Pathogenicity Determinant Protein C (PdpC) in Determining the Virulence of the Francisella tularensis Subspecies tularensis SCHU 
PLoS ONE  2014;9(2):e89075.
Francisella tularensis subspecies tularensis, the etiological agent of tularemia, is highly pathogenic to humans and animals. However, the SCHU strain of F. tularensis SCHU P0 maintained by passaging in artificial media has been found to be attenuated. To better understand the molecular mechanisms behind the pathogenicity of F. tularensis SCHU, we attempted to isolate virulent bacteria by serial passages in mice. SCHU P5 obtained after 5th passages in mice remained avirulent, while SCHU P9 obtained after 9th passages was completely virulent in mice. Moreover, SCHU P9 grew more efficiently in J774.1 murine macrophages compared with that in the less pathogenic SCHU P0 and P5. Comparison of the nucleotide sequences of the whole genomes of SCHU P0, P5, and P9 revealed only 1 nucleotide difference among P0, P5 and P9 in 1 of the 2 copies of pathogenicity determinant protein C (pdpC) gene. An adenine residue deletion was observed in the pdpC1 gene of SCHU P0, P5, and P9 and in the pdpC2 gene of SCHU P0, and P5, while P9 was characterized by the wild type pdpC2 gene. Thus, SCHU P0 and P5 expressed only truncated forms of PdpC protein, while SCHU P9 expressed both wild type and truncated versions. To validate the pathogenicity of PdpC, both copies of the pdpC gene in SCHU P9 have been inactivated by Targetron mutagenesis. SCHU P9 mutants with inactivated pdpC gene showed low intracellular growth in J774.1 cells and did not induce severe disease in experimentally infected mice, while virulence of the mutants was restored by complementation with expression of the intact PdpC. These results demonstrate that PdpC is crucial in determining the virulence of F. tularensis SCHU.
PMCID: PMC3928404  PMID: 24558472
2.  Detection of Francisella tularensis-Specific Antibodies in Patients with Tularemia by a Novel Competitive Enzyme-Linked Immunosorbent Assay 
A novel competitive enzyme-linked immunosorbent assay (cELISA) was developed and evaluated for detection of antibodies against Francisella tularensis in humans. The assay is based on the ability of serum antibodies to inhibit the binding of monoclonal antibodies (MAbs) directed against F. tularensis lipopolysaccharide antigens. The assay was evaluated using serum samples of tularemia patients, inactivated F. tularensis-immunized rabbits, and F. tularensis-infected mice. Antibodies against F. tularensis were successfully detected in serum samples of tularemia patients as well as the immunized and infected animals. The cELISA method was compared to indirect ELISA (iELISA) and the commonly used microagglutination test (MA) using serum samples of 19 tularemia patients and 50 healthy individuals. The sensitivity and specificity of cELISA were 93.9 and 96.1%, respectively, in comparison to the iELISA. MA was less sensitive than cELISA with a sensitivity and specificity of only 81.8 and 98.0%, respectively. A high degree of correlation (R2 = 0.8226) was observed between cELISA and iELISA results. The novel cELISA developed in this study appears to be highly sensitive and specific for serodiagnosis of human tularemia. The potential of the MAb-based cELISA to be used in both human and animal samples emphasizes its usefulness for serological survey of tularemia among multiple animal species.
PMCID: PMC3535769  PMID: 23114700
3.  Altered specificity of single-chain antibody fragments bound to pandemic H1N1-2009 influenza virus after conversion of the phage-bound to the soluble form 
BMC Research Notes  2012;5:483.
In 2009, a novel influenza A/H1N1 virus (H1N1pdm) quickly spread worldwide and co-circulated with then-existing seasonal H1N1 virus (sH1N1). Distinguishing between these 2 viruses was necessary to better characterize the epidemiological properties of the emergent virus, including transmission patterns, pathogenesis, and anti-influenza drug resistance. This situation prompted us to develop a point-of-care virus differentiation system before entering the 2009–2010 influenza season. Aiming to establish H1N1pdm-specific detection tools rapidly, we employed phage display libraries to select H1N1pdm-specific single-chain variable fragments (scFvs).
Human single-fold scFv libraries (Tomlinson I + J) underwent selection for the ability to bind H1N1pdm virus particles. Three rounds of panning brought 1152 phage-bound scFvs, of which 58 clones reacted with H1N1pdm specifically or preferentially over sH1N1 in an enzyme-linked immunosorbent assay (ELISA). After conversion of the scFvs to soluble form, 7 clones demonstrating high/stable expression were finally obtained. However, all the soluble scFvs except No. 29 were found to have lost their specificity/preference for H1N1pdm in ELISA. The specificity/preference of No. 29 was also confirmed by immunofluorescence assay and immunoprecipitation, and the viral nucleoprotein was identified by ELISA as its target protein. The change in specificity associated with scFv conversion from phage-bound to soluble form could be due to loss of phage scaffold pIII protein, which likely provides structural support for the scFv antigen-binding site. It is also possible that the similar antigenic properties of H1N1pdm and sH1N1 led to the observed alterations in scFv specificity.
Using a phage display library, we obtained 7 soluble scFv clones reactive against H1N1pdm; however, only 1 showed specificity/preference toward H1N1pdm. Our results confirmed that using phage display libraries was highly advantageous for the rapid development of molecules to detect target antigens. However, our results also indicated that this strategy might not have been effective for selecting H1N1pdm-specific antibodies during the 2009 pandemic, where the co-circulating sH1N1 virus shared similar antigenic properties. This suggests that it might be advisable to use a synthetic scFv phage display library by strategically considering the characteristics of target antigens and the potential situations.
PMCID: PMC3492028  PMID: 22943792
Influenza; Pandemic; Diagnosis; Single-chain variable fragment (scFv); Altered specificity
4.  Preparation of Monoclonal Antibodies for Detection and Identification of Francisella tularensis▿  
Monoclonal antibodies (MAbs) against Francisella tularensis were obtained. Three MAbs specifically reacted with F. tularensis, while four MAbs reacted with other members of the genus Francisella as well. Fluorescent isothiocyanate-conjugated MAbs unequivocally stained bacterial cells in specimens from experimentally infected mice. Two MAbs agglutinated F. tularensis antigen in the agglutination tests. These MAbs should improve methods for detection and identification of F. tularensis.
PMCID: PMC1797713  PMID: 17121981
5.  SCID Mouse Model for Lethal Q Fever  
Infection and Immunity  2003;71(8):4717-4723.
Q fever, a worldwide zoonosis caused by Coxiella burnetii, has many manifestations in humans. Endocarditis is the most serious complication of Q fever. Animal models are limited to acute pulmonary or hepatic disease and reproductive disorders. An appropriate experimental animal model for Q fever endocarditis does not yet exist. In this study, severe combined immunodeficient (SCID) mice infected with C. burnetii showed persistent clinical symptoms and died, whereas immunocompetent mice similarly infected became asymptomatic and survived. The SCID mice examined in this study had severe chronic lesions in their primary organs: the heart, lung, spleen, liver, and kidney. The heart lesions of the SCID mice were similar to those in humans with chronic Q fever endocarditis: they had focal calcification and expanded macrophages containing C. burnetii. The 50% lethal dose of C. burnetii in SCID mice was at least 108 times less than that in immunocompetent mice. The SCID mouse is highly susceptible to C. burnetii, and the immunodeficiency of the host enhances the severity of Q fever. This animal model could provide a new tool for the study of chronic Q fever and Q fever in immunodeficient hosts.
PMCID: PMC166031  PMID: 12874353
6.  Use of Monoclonal Antibodies to Lipopolysaccharide for Antigenic Analysis of Coxiella burnetii 
Journal of Clinical Microbiology  2003;41(4):1747-1749.
Antigenic differences among Coxiella burnetii strains were analyzed. The monoclonal antibodies against the lipopolysaccharide outer core did not react with the strains containing a QpRS plasmid or with plasmidless strains, whereas they reacted with strains containing a QpH1 or QpDV plasmid. C. burnetii isolates could be divided into two groups immunologically.
PMCID: PMC153864  PMID: 12682176
7.  Phase Variation Analysis of Coxiella burnetii during Serial Passage in Cell Culture by Use of Monoclonal Antibodies  
Infection and Immunity  2002;70(8):4747-4749.
Antigenic changes in Coxiella burnetii Nine Mile strain phase I during serial passages in cell culture were analyzed with three groups of monoclonal antibodies (MAbs) against lipopolysaccharide. The MAbs of group 1 did not react with organisms that were passaged over five times, and the MAbs of group 2 did not react with organisms that were passaged over eight times. The MAbs of group 3 reacted with organisms passaged up to 15 times but did not react with phase II cells. These results suggest that C. burnetii could be differentiated into four phase states during phase variation.
PMCID: PMC128212  PMID: 12117996

Results 1-7 (7)