Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Males and Females Contribute Unequally to Offspring Genetic Diversity in the Polygynandrous Mating System of Wild Boar 
PLoS ONE  2014;9(12):e115394.
The maintenance of genetic diversity across generations depends on both the number of reproducing males and females. Variance in reproductive success, multiple paternity and litter size can all affect the relative contributions of male and female parents to genetic variation of progeny. The mating system of the wild boar (Sus scrofa) has been described as polygynous, although evidence of multiple paternity in litters has been found. Using 14 microsatellite markers, we evaluated the contribution of males and females to genetic variation in the next generation in independent wild boar populations from the Iberian Peninsula and Hungary. Genetic contributions of males and females were obtained by distinguishing the paternal and maternal genetic component inherited by the progeny. We found that the paternally inherited genetic component of progeny was more diverse than the maternally inherited component. Simulations showed that this finding might be due to a sampling bias. However, after controlling for the bias by fitting both the genetic diversity in the adult population and the number of reproductive individuals in the models, paternally inherited genotypes remained more diverse than those inherited maternally. Our results suggest new insights into how promiscuous mating systems can help maintain genetic variation.
PMCID: PMC4277350  PMID: 25541986
2.  Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa) 
BMC Research Notes  2012;5:479.
The wild boar (Sus scrofa) is among the most widespread mammal species throughout the old world. Presently, studies concerning microsatellites in domestic pigs and wild boars have been carried out in order to investigate domestication, social behavior and general diversity patterns among either populations or breeds. The purpose of the current study is to develop a robust set of microsatellites markers for parentage analyses and individual identification.
A set of 14 previously reported microsatellites markers have been optimized and tested in three populations from Hungary, Portugal and Spain, in a total of 167 samples. The results indicate high probabilities of exclusion (0.99999), low probability of identity (2.0E-13 – 2.5E-9) and a parentage assignment of 100%.
Our results demonstrate that this set of markers is a useful and efficient tool for the individual identification and parentage assignment in wild boars.
PMCID: PMC3475110  PMID: 22943565
Sus scrofa; Parentage assignment; Individual identification; Microsatellite markers; Wild boar
3.  Evolutionary patterns of two major reproduction candidate genes (Zp2 and Zp3) reveal no contribution to reproductive isolation between bovine species 
It has been established that mammalian egg zona pellucida (ZP) glycoproteins are responsible for species-restricted binding of sperm to unfertilized eggs, inducing the sperm acrosome reaction, and preventing polyspermy. In mammals, ZP apparently represents a barrier to heterospecific fertilization and thus probably contributes to reproductive isolation between species. The evolutionary relationships between some members of the tribe Bovini are complex and highly debatable, particularly, those involving Bos and Bison species for which interspecific hybridization is extensively documented. Because reproductive isolation is known to be a major precursor of species divergence, testing evolutionary patterns of ZP glycoproteins may shed some light into the speciation process of these species. To this end, we have examined intraspecific and interspecific genetic variation of two ZP genes (Zp2 and Zp3) for seven representative species (111 individuals) from the Bovini tribe, including five species from Bos and Bison, and two species each from genera Bubalus and Syncerus.
A pattern of low levels of intraspecific polymorphism and interspecific divergence was detected for the two sequenced fragments each for Zp2 and Zp3. At intraspecific level, none of neutrality tests detected deviations from neutral equilibrium expectations for the two genes. Several haplotypes in both genes were shared by multiple species from Bos and Bison.
Here we argue that neither ancestral polymorphism nor introgressive hybridization alone can fully account for haplotype sharing among species from Bos and Bison, and that both scenarios have contributed to such a pattern of haplotype sharing observed here. Additionally, codon-based tests revealed strong evidence for purifying selection in the Zp3 coding haplotype sequences and weak evidence for purifying selection in the Zp2 coding haplotype sequences. Contrary to a general genetic pattern that genes or genomic regions contributing to reproductive isolation between species often evolve rapidly and show little or no gene flow between species, these results demonstrate that, particularly, those sequenced exons of the Zp2 and the Zp3 did not show any contribution to reproductive isolation between the bovine species studied here.
PMCID: PMC3037879  PMID: 21266067

Results 1-3 (3)