PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (36)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Recurrent PTPRB and PLCG1 mutations in angiosarcoma 
Nature genetics  2014;46(4):376-379.
Angiosarcoma is an aggressive malignancy that arises spontaneously or secondarily to ionising radiation or chronic lymphoedema1. Previous work has identified aberrant angiogenesis, including occasional somatic mutations in angiogenesis signalling genes, as a key driver of angiosarcoma1. Here, we employed whole genome, exome, and targeted sequencing to study the somatic changes underpinning primary and secondary angiosarcoma. We identified recurrent mutations in two genes, PTPRB and PLCG1, which are intimately linked to angiogenesis. The endothelial phosphatase PTPRB, a negative regulator of vascular growth factor tyrosine kinases, harboured predominantly truncating mutations in 10/39 (26%) tumours. PLCG1, a signal transducer of tyrosine kinases, presented with a recurrent, likely activating R707Q missense variant in 3/34 cases (9%). Overall, 15/39 (38%) tumours harboured at least one driver mutation in angiogenesis signalling genes. Our findings inform and reinforce current therapeutic efforts to target angiogenesis signalling in angiosarcoma.
doi:10.1038/ng.2921
PMCID: PMC4032873  PMID: 24633157
2.  Polygenic in vivo validation of cancer mutations using transposons 
Genome Biology  2014;15(9):455.
The in vivo validation of cancer mutations and genes identified in cancer genomics is resource-intensive because of the low throughput of animal experiments. We describe a mouse model that allows multiple cancer mutations to be validated in each animal line. Animal lines are generated with multiple candidate cancer mutations using transposons. The candidate cancer genes are tagged and randomly expressed in somatic cells, allowing easy identification of the cancer genes involved in the generated tumours. This system presents a useful, generalised and efficient means for animal validation of cancer genes.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0455-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s13059-014-0455-6
PMCID: PMC4210617  PMID: 25260652
3.  RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia 
Nature genetics  2014;46(2):116-125.
The ETV6-RUNX1 fusion gene, found in 25% of childhood acute lymphoblastic leukemia (ALL), is acquired in utero but requires additional somatic mutations for overt leukemia. We used exome and low-coverage whole-genome sequencing to characterize secondary events associated with leukemic transformation. RAG-mediated deletions emerge as the dominant mutational process, characterized by recombination signal sequence motifs near the breakpoints; incorporation of non-templated sequence at the junction; ~30-fold enrichment at promoters and enhancers of genes actively transcribed in B-cell development and an unexpectedly high ratio of recurrent to non-recurrent structural variants. Single cell tracking shows that this mechanism is active throughout leukemic evolution with evidence of localized clustering and re-iterated deletions. Integration of point mutation and rearrangement data identifies ATF7IP and MGA as two new tumor suppressor genes in ALL. Thus, a remarkably parsimonious mutational process transforms ETV6-RUNX1 lymphoblasts, targeting the promoters, enhancers and first exons of genes that normally regulate B-cell differentiation.
doi:10.1038/ng.2874
PMCID: PMC3960636  PMID: 24413735
4.  Signatures of mutational processes in human cancer 
Alexandrov, Ludmil B. | Nik-Zainal, Serena | Wedge, David C. | Aparicio, Samuel A.J.R. | Behjati, Sam | Biankin, Andrew V. | Bignell, Graham R. | Bolli, Niccolo | Borg, Ake | Børresen-Dale, Anne-Lise | Boyault, Sandrine | Burkhardt, Birgit | Butler, Adam P. | Caldas, Carlos | Davies, Helen R. | Desmedt, Christine | Eils, Roland | Eyfjörd, Jórunn Erla | Foekens, John A. | Greaves, Mel | Hosoda, Fumie | Hutter, Barbara | Ilicic, Tomislav | Imbeaud, Sandrine | Imielinsk, Marcin | Jäger, Natalie | Jones, David T.W. | Jones, David | Knappskog, Stian | Kool, Marcel | Lakhani, Sunil R. | López-Otín, Carlos | Martin, Sancha | Munshi, Nikhil C. | Nakamura, Hiromi | Northcott, Paul A. | Pajic, Marina | Papaemmanuil, Elli | Paradiso, Angelo | Pearson, John V. | Puente, Xose S. | Raine, Keiran | Ramakrishna, Manasa | Richardson, Andrea L. | Richter, Julia | Rosenstiel, Philip | Schlesner, Matthias | Schumacher, Ton N. | Span, Paul N. | Teague, Jon W. | Totoki, Yasushi | Tutt, Andrew N.J. | Valdés-Mas, Rafael | van Buuren, Marit M. | van ’t Veer, Laura | Vincent-Salomon, Anne | Waddell, Nicola | Yates, Lucy R. | Zucman-Rossi, Jessica | Futreal, P. Andrew | McDermott, Ultan | Lichter, Peter | Meyerson, Matthew | Grimmond, Sean M. | Siebert, Reiner | Campo, Elías | Shibata, Tatsuhiro | Pfister, Stefan M. | Campbell, Peter J. | Stratton, Michael R.
Nature  2013;500(7463):415-421.
All cancers are caused by somatic mutations. However, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here, we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, kataegis, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer with potential implications for understanding of cancer etiology, prevention and therapy.
doi:10.1038/nature12477
PMCID: PMC3776390  PMID: 23945592
5.  Distinct H3F3A and H3F3B driver variants define chondroblastoma and giant cell tumour of bone 
Nature genetics  2013;45(12):10.1038/ng.2814.
It is recognised that some mutated cancer genes contribute to the development of many cancer types whilst others are cancer-type specific. Amongst genes that affect multiple cancer classes, mutations are usually similar in the different cancer types. Here, however, we observed exquisite tumour-type specificity of different histone 3.3 driver mutations. In 73/77 (95%) cases of chondroblastoma we found K36M mutations predominantly in H3F3B, which is one of two genes encoding histone 3.3. By contrast, 92% (49/53) of giant cell tumours of bone harboured histone 3.3 variants exclusively in H3F3A, which were G34W or, in one case, G34L. The mutations were restricted to the stromal cell population and not detected in osteoclasts or their precursors. In the context of previously reported H3F3A K27M and G34R/V mutations of childhood brain tumours, a remarkable picture of tumour-type specificity of histone 3.3 mutations emerges, indicating distinct functions of histone 3.3 residues, mutations and genes.
doi:10.1038/ng.2814
PMCID: PMC3839851  PMID: 24162739
6.  The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models 
Genome Biology  2013;14(10):R113.
Background
Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process.
Results
To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAFV600E or NRASQ61K driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAFV600E and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway.
Conclusion
This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation.
doi:10.1186/gb-2013-14-10-r113
PMCID: PMC3983654  PMID: 24148783
8.  Whole exome sequencing of adenoid cystic carcinoma 
The Journal of Clinical Investigation  2013;123(7):2965-2968.
Adenoid cystic carcinoma (ACC) is a rare malignancy that can occur in multiple organ sites and is primarily found in the salivary gland. While the identification of recurrent fusions of the MYB-NFIB genes have begun to shed light on the molecular underpinnings, little else is known about the molecular genetics of this frequently fatal cancer. We have undertaken exome sequencing in a series of 24 ACC to further delineate the genetics of the disease. We identified multiple mutated genes that, combined, implicate chromatin deregulation in half of cases. Further, mutations were identified in known cancer genes, including PIK3CA, ATM, CDKN2A, SF3B1, SUFU, TSC1, and CYLD. Mutations in NOTCH1/2 were identified in 3 cases, and we identify the negative NOTCH signaling regulator, SPEN, as a new cancer gene in ACC with mutations in 5 cases. Finally, the identification of 3 likely activating mutations in the tyrosine kinase receptor FGFR2, analogous to those reported in ovarian and endometrial carcinoma, point to potential therapeutic avenues for a subset of cases.
doi:10.1172/JCI67201
PMCID: PMC3999050  PMID: 23778141
9.  Single-cell paired-end genome sequencing reveals structural variation per cell cycle 
Nucleic Acids Research  2013;41(12):6119-6138.
The nature and pace of genome mutation is largely unknown. Because standard methods sequence DNA from populations of cells, the genetic composition of individual cells is lost, de novo mutations in cells are concealed within the bulk signal and per cell cycle mutation rates and mechanisms remain elusive. Although single-cell genome analyses could resolve these problems, such analyses are error-prone because of whole-genome amplification (WGA) artefacts and are limited in the types of DNA mutation that can be discerned. We developed methods for paired-end sequence analysis of single-cell WGA products that enable (i) detecting multiple classes of DNA mutation, (ii) distinguishing DNA copy number changes from allelic WGA-amplification artefacts by the discovery of matching aberrantly mapping read pairs among the surfeit of paired-end WGA and mapping artefacts and (iii) delineating the break points and architecture of structural variants. By applying the methods, we capture DNA copy number changes acquired over one cell cycle in breast cancer cells and in blastomeres derived from a human zygote after in vitro fertilization. Furthermore, we were able to discover and fine-map a heritable inter-chromosomal rearrangement t(1;16)(p36;p12) by sequencing a single blastomere. The methods will expedite applications in basic genome research and provide a stepping stone to novel approaches for clinical genetic diagnosis.
doi:10.1093/nar/gkt345
PMCID: PMC3695511  PMID: 23630320
11.  Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes 
The Journal of pathology  2012;227(4):446-455.
The application of paired-end next generation sequencing approaches has made it possible to systematically characterize rearrangements of the cancer genome to base-pair level. Utilizing this approach, we report the first detailed analysis of ovarian cancer rearrangements, comparing high-grade serous and clear cell cancers, and these histotypes with other solid cancers. Somatic rearrangements were systematically characterized in eight high-grade serous and five clear cell ovarian cancer genomes and we report here the identification of > 600 somatic rearrangements. Recurrent rearrangements of the transcriptional regulator gene, TSHZ3, were found in three of eight serous cases. Comparison to breast, pancreatic and prostate cancer genomes revealed that a subset of ovarian cancers share a marked tandem duplication phenotype with triple-negative breast cancers. The tandem duplication phenotype was not linked to BRCA1/2 mutation, suggesting that other common mechanisms or carcinogenic exposures are operative. High-grade serous cancers arising in women with germline BRCA1 or BRCA2 mutation showed a high frequency of small chromosomal deletions. These findings indicate that BRCA1/2 germline mutation may contribute to widespread structural change and that other undefined mechanism(s), which are potentially shared with triple-negative breast cancer, promote tandem chromosomal duplications that sculpt the ovarian cancer genome.
doi:10.1002/path.4042
PMCID: PMC3428857  PMID: 22514011
ovarian cancer; structural rearrangements; TSHZ3
12.  The landscape of cancer genes and mutational processes in breast cancer 
Nature  2012;486(7403):400-404.
All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis1, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.
doi:10.1038/nature11017
PMCID: PMC3428862  PMID: 22722201
13.  The Life History of 21 Breast Cancers 
Cell  2012;149(5):994-1007.
SUMMARY
Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer’s life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer’s lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer’s development, triggering diagnosis.
doi:10.1016/j.cell.2012.04.023
PMCID: PMC3428864  PMID: 22608083
14.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES 
Nature  2009;462(7276):1005-1010.
SUMMARY
Multiple somatic rearrangements are often found in cancer genomes. However, the underlying processes of rearrangement and their contribution to cancer development are poorly characterised. Here, we employed a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated. Rearrangements are more frequent over gene footprints and most are intrachromosomal. Multiple architectures of rearrangement are present, but tandem duplications are common in some cancers, perhaps reflecting a specific defect in DNA maintenance. Short overlapping sequences at most rearrangement junctions suggest that these have been mediated by non-homologous end-joining DNA repair, although varying sequence patterns indicate that multiple processes of this type are operative. Several expressed in-frame fusion genes were identified but none were recurrent. The study provides a new perspective on cancer genomes, highlighting the diversity of somatic rearrangements and their potential contribution to cancer development.
doi:10.1038/nature08645
PMCID: PMC3398135  PMID: 20033038
15.  Mutational Processes Molding the Genomes of 21 Breast Cancers 
Cell  2012;149(5-10):979-993.
Summary
All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed “kataegis,” was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.
PaperClip
Graphical Abstract
Highlights
► The genomes of 21 breast cancers sequenced ► Multiple somatic mutational processes extracted from mutation catalogs ► Mutational processes of BRCA1/BRCA2 breast cancers are distinctive ► Localized regions of hypermutation, “kataegis,” are frequent in breast cancers
Analyses of breast cancer genomes define distinct mutational signatures that imply the existence of multiple distinct somatic mutational processes throughout the genome and reveal a remarkable phenomenon of localized hypermutation. These highly mutated regions vary in size and chromosomal location and are surprisingly frequent in cancer genomes, often colocalizing with somatic rearrangements.
doi:10.1016/j.cell.2012.04.024
PMCID: PMC3414841  PMID: 22608084
16.  The Life History of 21 Breast Cancers 
Cell  2012;149(5):994-1007.
Summary
Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.
PaperClip
Graphical Abstract
Highlights
► Genome-wide analyses of mutations emerging through time in 21 breast cancers ► Minimal expansion of subclones occurs until thousands of mutations have accumulated ► Cancer-specific signatures of point mutations and genomic instability emerge late ► ERBB2 amplification begins early but continues to evolve over long molecular time
Newly developed algorithms allow the reconstruction of the genomic history of different breast cancers, tracing the temporal evolution of each tumor and the emergence of the dominant subclones that will eventually trigger diagnosis.
doi:10.1016/j.cell.2012.04.023
PMCID: PMC3428864  PMID: 22608083
18.  A comprehensive catalogue of somatic mutations from a human cancer genome 
Nature  2009;463(7278):191-196.
All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.
doi:10.1038/nature08658
PMCID: PMC3145108  PMID: 20016485
19.  Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma 
Nature  2011;469(7331):539-542.
Summary
The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ~3500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (KDM6A)1, JARID1C (KDM5C) and SETD22. These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control3. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodeling complex gene PBRM14 as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.
doi:10.1038/nature09639
PMCID: PMC3030920  PMID: 21248752
20.  The patterns and dynamics of genomic instability in metastatic pancreatic cancer 
Nature  2010;467(7319):1109-1113.
SUMMARY
Pancreatic cancer is an aggressive malignancy with 5-year mortality of 97–98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations1–5, but genomic rearrangements have not been characterised in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours6,7, including phylogenetic relationships among metastases, the scale of on-going parallel evolution in metastatic and primary sites7, and how the tumour disseminates. Here, we harness advances in DNA sequencing8–12 to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-S phase transition with intact G2-M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than later stages of disease. Genomic instability frequently persists after cancer dissemination, resulting in on-going, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells; seeding metastasis may require driver mutations beyond those required for primary tumours; and phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, hewn by the tandem forces of genomic instability and evolutionary selection.
doi:10.1038/nature09460
PMCID: PMC3137369  PMID: 20981101
21.  The patterns and dynamics of genomic instability in metastatic pancreatic cancer 
Nature  2010;467(7319):1109-1113.
Pancreatic cancer is an aggressive malignancy with a five-year mortality of 97–98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations1–5, but genomic rearrangements have not been characterized in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours6,7, including phylogenetic relationships among metastases, the scale of ongoing parallel evolution in metastatic and primary sites7, and how the tumour disseminates. Here we harness advances in DNA sequencing8–12 to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-to-S-phase transition with intact G2–M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than the later stages of the disease. Genomic instability frequently persists after cancer dissemination, resulting in ongoing, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells, that seeding metastasis may require driver mutations beyond those required for primary tumours, and that phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, brought about by the tandem forces of genomic instability and evolutionary selection.
doi:10.1038/nature09460
PMCID: PMC3137369  PMID: 20981101
22.  Data mining using the Catalogue of Somatic Mutations in Cancer BioMart 
Catalogue of Somatic Mutations in Cancer (COSMIC) (http://www.sanger.ac.uk/cosmic) is a publicly available resource providing information on somatic mutations implicated in human cancer. Release v51 (January 2011) includes data from just over 19 000 genes, 161 787 coding mutations and 5573 gene fusions, described in more than 577 000 tumour samples. COSMICMart (COSMIC BioMart) provides a flexible way to mine these data and combine somatic mutations with other biological relevant data sets. This article describes the data available in COSMIC along with examples of how to successfully mine and integrate data sets using COSMICMart.
Database URL: http://www.sanger.ac.uk/genetics/CGP/cosmic/biomart/martview/
doi:10.1093/database/bar018
PMCID: PMC3263736  PMID: 21609966
23.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development 
Cell  2011;144(1):27-40.
Summary
Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%–3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.
PaperClip
Graphical Abstract
Highlights
► 2%–3% cancers show 10–100 s of rearrangements localized to specific genomic regions ► Genomic features imply chromosome breaks occur in one-off crisis (“chromothripsis”) ► Found across all tumor types, especially common in bone cancers (up to 25%) ► Can generate several genomic lesions with potential to drive cancer in single event
doi:10.1016/j.cell.2010.11.055
PMCID: PMC3065307  PMID: 21215367
24.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer 
Nucleic Acids Research  2010;39(Database issue):D945-D950.
COSMIC (http://www.sanger.ac.uk/cosmic) curates comprehensive information on somatic mutations in human cancer. Release v48 (July 2010) describes over 136 000 coding mutations in almost 542 000 tumour samples; of the 18 490 genes documented, 4803 (26%) have one or more mutations. Full scientific literature curations are available on 83 major cancer genes and 49 fusion gene pairs (19 new cancer genes and 30 new fusion pairs this year) and this number is continually increasing. Key amongst these is TP53, now available through a collaboration with the IARC p53 database. In addition to data from the Cancer Genome Project (CGP) at the Sanger Institute, UK, and The Cancer Genome Atlas project (TCGA), large systematic screens are also now curated. Major website upgrades now make these data much more mineable, with many new selection filters and graphics. A Biomart is now available allowing more automated data mining and integration with other biological databases. Annotation of genomic features has become a significant focus; COSMIC has begun curating full-genome resequencing experiments, developing new web pages, export formats and graphics styles. With all genomic information recently updated to GRCh37, COSMIC integrates many diverse types of mutation information and is making much closer links with Ensembl and other data resources.
doi:10.1093/nar/gkq929
PMCID: PMC3013785  PMID: 20952405
25.  Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes 
Nature  2010;463(7279):360-363.
Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterised by the presence of inactivating mutations in the VHL gene in the majority of cases1,2 and by infrequent somatic mutations in known cancer genes. To elucidate further the genetics of ccRCC, we have sequenced 101 cases through 3544 protein coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification, SETD2, a histone H3 lysine 36 methyltransferase and JARID1C (KDM5C), a histone H3 lysine 4 demethylase in addition to mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), we recently reported3. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Additionally, NF2 mutations were found in non-VHL mutated ccRCC and several other likely cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene and that systematic screens will be key to fully elucidating the somatic genetic architecture of cancer.
doi:10.1038/nature08672
PMCID: PMC2820242  PMID: 20054297

Results 1-25 (36)