PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (33)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS 
Nature  2012;488(7409):106-110.
Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma.
doi:10.1038/nature11329
PMCID: PMC3413789  PMID: 22820256
2.  WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma 
TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6% ± 8.7%, respectively (p < 0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89% ± 2% vs. 57.4% ± 1.8% (p < 0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p < 0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5% ± 1.5% in lithium treated cells vs. 56.6 ± 3% (p < 0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33% ± 8% for lithium treated cells vs. 27% ± 3% for untreated controls (p = 0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-014-0174-y) contains supplementary material, which is available to authorized users.
doi:10.1186/s40478-014-0174-y
PMCID: PMC4297452  PMID: 25539912
3.  Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis 
The lancet oncology  2013;14(12):1200-1207.
Background
Recurrent medulloblastoma is a daunting therapeutic challenge as it is almost universally fatal. Recent studies confirmed that medulloblastoma comprises four distinct subgroups. We sought to delineate subgroup specific differences in medulloblastoma recurrence patterns.
Methods
We retrospectively identified a discovery cohort of all recurrent medulloblastomas at the Hospital for Sick Children between 1994-2012, and performed molecular subgrouping on FFPE tissues using a nanoString-based assay. The anatomical site of recurrence (local tumour bed or leptomeningeal metastasis), time to recurrence and survival post-recurrence were determined in a subgroup specific fashion. Subgroup specific recurrence patterns were confirmed in two independent, non-overlapping FFPE validation cohorts. Where possible molecular subgrouping was performed on tissue obtained from both the initial surgery and at recurrence.
Results
A screening cohort of 30 recurrent medulloblastomas was assembled; nine with local recurrences, and 21 metastatic. When re-analysed in a subgroup specific manner, local recurrences were more frequent in SHH tumours (8/9, 88%) and metastatic recurrences were more common in Group 3 and 4 (17/20 [85%] with one WNT, p=0.0014, local vs metastatic recurrence, SHH vs Group 3 vs Group 4). The subgroup specific location of recurrence was confirmed in a multicenter validation cohort (p=0·0013 for local vs metastatic recurrence SHH vs Group 3 vs Group 4, n=77), and a second independent validation cohort comprising 96 recurrences (p<0·0001 for local vs metastatic recurrence SHH vs Group 3 vs Group 4, n=96). Treatment with craniospinal irradiation at diagnosis was not significantly associated with the anatomical pattern of recurrence. Survival post recurrence was significantly longer in Group 4 patients (p=0·013) as confirmed in a multicenter validation cohort (p=0·0075). Strikingly, subgroup affiliation remained stable at recurrence in all 34 cases with available matched primary and recurrent pairs.
Conclusions
Medulloblastoma does not switch subgroup at the time of recurrence further highlighting the stability of the four principle medulloblastoma subgroups. Significant differences in the location and timing of recurrence across medulloblastoma subgroups were observed which have potential treatment ramifications. Specifically, intensified local (posterior fossa) therapy should be tested in the initial treatment of SHH patients. Refinement of therapy for Groups 3 and 4 should focus on the metastatic compartment, as it is the near universal cause of patient deaths.
doi:10.1016/S1470-2045(13)70449-2
PMCID: PMC3953419  PMID: 24140199
4.  CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity 
Acta Neuropathologica  2014;128(2):291-303.
Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-014-1291-1) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-014-1291-1
PMCID: PMC4159569  PMID: 24839957
5.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma 
Jones, David T.W. | Hutter, Barbara | Jäger, Natalie | Korshunov, Andrey | Kool, Marcel | Warnatz, Hans-Jörg | Zichner, Thomas | Lambert, Sally R. | Ryzhova, Marina | Quang, Dong Anh Khuong | Fontebasso, Adam M. | Stütz, Adrian M. | Hutter, Sonja | Zuckermann, Marc | Sturm, Dominik | Gronych, Jan | Lasitschka, Bärbel | Schmidt, Sabine | Şeker-Cin, Huriye | Witt, Hendrik | Sultan, Marc | Ralser, Meryem | Northcott, Paul A. | Hovestadt, Volker | Bender, Sebastian | Pfaff, Elke | Stark, Sebastian | Faury, Damien | Schwartzentruber, Jeremy | Majewski, Jacek | Weber, Ursula D. | Zapatka, Marc | Raeder, Benjamin | Schlesner, Matthias | Worth, Catherine L. | Bartholomae, Cynthia C. | von Kalle, Christof | Imbusch, Charles D. | Radomski, Sylwester | Lawerenz, Chris | van Sluis, Peter | Koster, Jan | Volckmann, Richard | Versteeg, Rogier | Lehrach, Hans | Monoranu, Camelia | Winkler, Beate | Unterberg, Andreas | Herold-Mende, Christel | Milde, Till | Kulozik, Andreas E. | Ebinger, Martin | Schuhmann, Martin U. | Cho, Yoon-Jae | Pomeroy, Scott L. | von Deimling, Andreas | Witt, Olaf | Taylor, Michael D. | Wolf, Stephan | Karajannis, Matthias A. | Eberhart, Charles G. | Scheurlen, Wolfram | Hasselblatt, Martin | Ligon, Keith L. | Kieran, Mark W. | Korbel, Jan O. | Yaspo, Marie-Laure | Brors, Benedikt | Felsberg, Jörg | Reifenberger, Guido | Collins, V. Peter | Jabado, Nada | Eils, Roland | Lichter, Peter | Pfister, Stefan M.
Nature genetics  2013;45(8):927-932.
Pilocytic astrocytoma, the most common childhood brain tumor1, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations2. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression3 and often becoming a chronic disease with substantial morbidities4.
Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n=73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and novel NTRK2 fusion genes in non-cerebellar tumors. New BRAF activating changes were also observed. MAPK pathway alterations affected 100% of tumors analyzed, with no other significant mutations, indicating pilocytic astrocytoma as predominantly a single-pathway disease.
Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in NF15. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.
doi:10.1038/ng.2682
PMCID: PMC3951336  PMID: 23817572
6.  Integrative Genomic Analysis of Medulloblastoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome 
Journal of Clinical Oncology  2010;29(11):1424-1430.
Purpose
Medulloblastomas are heterogeneous tumors that collectively represent the most common malignant brain tumor in children. To understand the molecular characteristics underlying their heterogeneity and to identify whether such characteristics represent risk factors for patients with this disease, we performed an integrated genomic analysis of a large series of primary tumors.
Patients and Methods
We profiled the mRNA transcriptome of 194 medulloblastomas and performed high-density single nucleotide polymorphism array and miRNA analysis on 115 and 98 of these, respectively. Non-negative matrix factorization–based clustering of mRNA expression data was used to identify molecular subgroups of medulloblastoma; DNA copy number, miRNA profiles, and clinical outcomes were analyzed for each. We additionally validated our findings in three previously published independent medulloblastoma data sets.
Results
Identified are six molecular subgroups of medulloblastoma, each with a unique combination of numerical and structural chromosomal aberrations that globally influence mRNA and miRNA expression. We reveal the relative contribution of each subgroup to clinical outcome as a whole and show that a previously unidentified molecular subgroup, characterized genetically by c-MYC copy number gains and transcriptionally by enrichment of photoreceptor pathways and increased miR-183∼96∼182 expression, is associated with significantly lower rates of event-free and overall survivals.
Conclusion
Our results detail the complex genomic heterogeneity of medulloblastomas and identify a previously unrecognized molecular subgroup with poor clinical outcome for which more effective therapeutic strategies should be developed.
doi:10.1200/JCO.2010.28.5148
PMCID: PMC3082983  PMID: 21098324
7.  A novel syndrome caused by the E410K amino acid substitution in the neuronal β-tubulin isotype 3 
Brain  2013;136(2):522-535.
Missense mutations in TUBB3, the gene that encodes the neuronal-specific protein β-tubulin isotype 3, can cause isolated or syndromic congenital fibrosis of the extraocular muscles, a form of complex congenital strabismus characterized by cranial nerve misguidance. One of the eight TUBB3 mutations reported to cause congenital fibrosis of the extraocular muscles, c.1228G>A results in a TUBB3 E410K amino acid substitution that directly alters a kinesin motor protein binding site. We report the detailed phenotypes of eight unrelated individuals who harbour this de novo mutation, and thus define the ‘TUBB3 E410K syndrome’. Individuals harbouring this mutation were previously reported to have congenital fibrosis of the extraocular muscles, facial weakness, developmental delay and possible peripheral neuropathy. We now confirm by electrophysiology that a progressive sensorimotor polyneuropathy does indeed segregate with the mutation, and expand the TUBB3 E410K phenotype to include Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), stereotyped midface hypoplasia, intellectual disabilities and, in some cases, vocal cord paralysis, tracheomalacia and cyclic vomiting. Neuroimaging reveals a thin corpus callosum and anterior commissure, and hypoplastic to absent olfactory sulci, olfactory bulbs and oculomotor and facial nerves, which support underlying abnormalities in axon guidance and maintenance. Thus, the E410K substitution defines a new genetic aetiology for Moebius syndrome, Kallmann syndrome and cyclic vomiting. Moreover, the c.1228G>A mutation was absent in DNA from ∼600 individuals who had either Kallmann syndrome or isolated or syndromic ocular and/or facial dysmotility disorders, but who did not have the combined features of the TUBB3 E410K syndrome, highlighting the specificity of this phenotype–genotype correlation. The definition of the TUBB3 E410K syndrome will allow clinicians to identify affected individuals and predict the mutation based on clinical features alone.
doi:10.1093/brain/aws345
PMCID: PMC3572929  PMID: 23378218
Kallmann syndrome; cyclic vomiting; peripheral neuropathy; CFEOM; TUBB3
8.  Neuralized1 causes apoptosis and downregulates Notch target genes in medulloblastoma 
Neuro-Oncology  2010;12(12):1244-1256.
Neuralized (Neurl) is a highly conserved E3 ubiquitin ligase, which in Drosophila acts upon Notch ligands to regulate Notch pathway signaling. Human Neuralized1 (NEURL1) was investigated as a potential tumor suppressor in medulloblastoma (MB). The gene is located at 10q25.1, a region demonstrating frequent loss of heterozygosity in tumors. In addition, prior publications have shown that the Notch pathway is functional in a proportion of MB tumors and that Neurl1 is only expressed in differentiated cells in the developing cerebellum. In this study, NEURL1 expression was downregulated in MB compared with normal cerebellar tissue, with the lowest levels of expression in hedgehog-activated tumors. Control of gene expression by histone modification was implicated mechanistically; loss of 10q, sequence mutation, and promoter hypermethylation did not play major roles. NEURL1-transfected MB cell lines demonstrated decreased population growth, colony-forming ability, tumor sphere formation, and xenograft growth compared with controls, and a significant increase in apoptosis was seen on cell cycle and cell death analysis. Notch pathway inhibition occurred on the exogenous expression of NEURL1, as shown by decreased expression of the Notch ligand, Jagged1, and the target genes, HES1 and HEY1. From these studies, we conclude that NEURL1 is a candidate tumor suppressor in MB, at least in part through its effects on the Notch pathway.
doi:10.1093/neuonc/noq091
PMCID: PMC3018940  PMID: 20847082
deazaneplanocin; Jagged1; Neuralized1; Notch; tumor suppressor
9.  Medulloblastomics: The End of the Beginning 
Nature reviews. Cancer  2012;12(12):818-834.
Subgrouping of medulloblastoma by microarray expression profiling has dramatically changed our perspective of this malignant childhood brain tumour. Now, the availability of next-generation sequencing and complementary high-density genomic technologies has unmasked novel driver mutations in each medulloblastoma subgroup. The implications of these findings for the management of patients are readily apparent, pinpointing previously unappreciated diagnostic and therapeutic targets. Here, we summarize the ’explosion’ of data emerging from the application of modern genomics to medulloblastoma, and in particular the recurrent targets of mutation in medulloblastoma subgroups. These data are making their way into contemporary clinical trials as we seek to integrate conventional and molecularly targeted therapies.
doi:10.1038/nrc3410
PMCID: PMC3889646  PMID: 23175120
10.  Loss of the tumor suppressor Snf5 leads to aberrant activation of the Hedgehog-Gli pathway 
Nature medicine  2010;16(12):10.1038/nm.2251.
Aberrant activation of the Hedgehog (Hh) pathway can drive tumorigenesis1. To investigate the mechanism by which glioma-associated oncogene family zinc finger-1 (GLI1), a crucial effector of Hh signaling2, regulates Hh pathway activation, we searched for GLI1-interacting proteins. We report that the chromatin remodeling protein SNF5 (encoded by SMARCB1, hereafter called SNF5), which is inactivated in human malignant rhabdoid tumors (MRTs), interacts with GLI1. We show that Snf5 localizes to Gli1-regulated promoters and that loss of Snf5 leads to activation of the Hh-Gli pathway. Conversely, re-expression of SNF5 in MRT cells represses GLI1. Consistent with this, we show the presence of a Hh-Gli–activated gene expression profile in primary MRTs and show that GLI1 drives the growth of SNF5-deficient MRT cells in vitro and in vivo. Therefore, our studies reveal that SNF5 is a key mediator of Hh signaling and that aberrant activation of GLI1 is a previously undescribed targetable mechanism contributing to the growth of MRT cells.
doi:10.1038/nm.2251
PMCID: PMC3859448  PMID: 21076395
11.  Medulloblastoma Down Under 2013: a report from the third annual meeting of the International Medulloblastoma Working Group 
Acta Neuropathologica  2013;127(2):189-201.
Medulloblastoma is curable in approximately 70 % of patients. Over the past decade, progress in improving survival using conventional therapies has stalled, resulting in reduced quality of life due to treatment-related side effects, which are a major concern in survivors. The vast amount of genomic and molecular data generated over the last 5–10 years encourages optimism that improved risk stratification and new molecular targets will improve outcomes. It is now clear that medulloblastoma is not a single-disease entity, but instead consists of at least four distinct molecular subgroups: WNT/Wingless, Sonic Hedgehog, Group 3, and Group 4. The Medulloblastoma Down Under 2013 meeting, which convened at Bunker Bay, Australia, brought together 50 leading clinicians and scientists. The 2-day agenda included focused sessions on pathology and molecular stratification, genomics and mouse models, high-throughput drug screening, and clinical trial design. The meeting established a global action plan to translate novel biologic insights and drug targeting into treatment regimens to improve outcomes. A consensus was reached in several key areas, with the most important being that a novel classification scheme for medulloblastoma based on the four molecular subgroups, as well as histopathologic features, should be presented for consideration in the upcoming fifth edition of the World Health Organization’s classification of tumours of the central nervous system. Three other notable areas of agreement were as follows: (1) to establish a central repository of annotated mouse models that are readily accessible and freely available to the international research community; (2) to institute common eligibility criteria between the Children’s Oncology Group and the International Society of Paediatric Oncology Europe and initiate joint or parallel clinical trials; (3) to share preliminary high-throughput screening data across discovery labs to hasten the development of novel therapeutics. Medulloblastoma Down Under 2013 was an effective forum for meaningful discussion, which resulted in enhancing international collaborative clinical and translational research of this rare disease. This template could be applied to other fields to devise global action plans addressing all aspects of a disease, from improved disease classification, treatment stratification, and drug targeting to superior treatment regimens to be assessed in cooperative international clinical trials.
doi:10.1007/s00401-013-1213-7
PMCID: PMC3895219  PMID: 24264598
12.  TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma 
Remke, Marc | Ramaswamy, Vijay | Peacock, John | Shih, David J. H. | Koelsche, Christian | Northcott, Paul A. | Hill, Nadia | Cavalli, Florence M. G. | Kool, Marcel | Wang, Xin | Mack, Stephen C. | Barszczyk, Mark | Morrissy, A. Sorana | Wu, Xiaochong | Agnihotri, Sameer | Luu, Betty | Jones, David T. W. | Garzia, Livia | Dubuc, Adrian M. | Zhukova, Nataliya | Vanner, Robert | Kros, Johan M. | French, Pim J. | Van Meir, Erwin G. | Vibhakar, Rajeev | Zitterbart, Karel | Chan, Jennifer A. | Bognár, László | Klekner, Almos | Lach, Boleslaw | Jung, Shin | Saad, Ali G. | Liau, Linda M. | Albrecht, Steffen | Zollo, Massimo | Cooper, Michael K. | Thompson, Reid C. | Delattre, Oliver O. | Bourdeaut, Franck | Doz, François F. | Garami, Miklós | Hauser, Peter | Carlotti, Carlos G. | Van Meter, Timothy E. | Massimi, Luca | Fults, Daniel | Pomeroy, Scott L. | Kumabe, Toshiro | Ra, Young Shin | Leonard, Jeffrey R. | Elbabaa, Samer K. | Mora, Jaume | Rubin, Joshua B. | Cho, Yoon-Jae | McLendon, Roger E. | Bigner, Darell D. | Eberhart, Charles G. | Fouladi, Maryam | Wechsler-Reya, Robert J. | Faria, Claudia C. | Croul, Sidney E. | Huang, Annie | Bouffet, Eric | Hawkins, Cynthia E. | Dirks, Peter B. | Weiss, William A. | Schüller, Ulrich | Pollack, Ian F. | Rutkowski, Stefan | Meyronet, David | Jouvet, Anne | Fèvre-Montange, Michelle | Jabado, Nada | Perek-Polnik, Marta | Grajkowska, Wieslawa A. | Kim, Seung-Ki | Rutka, James T. | Malkin, David | Tabori, Uri | Pfister, Stefan M. | Korshunov, Andrey | von Deimling, Andreas | Taylor, Michael D.
Acta Neuropathologica  2013;126(6):917-929.
Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-013-1198-2) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-013-1198-2
PMCID: PMC3830749  PMID: 24174164
TERT promoter mutations; SHH pathway; Adult; Medulloblastoma
13.  Medulloblastoma biology in the post-genomic era 
Future oncology (London, England)  2012;8(12):1597-1604.
Medulloblastomas, the most common malignant pediatric brain tumors, are comprised of four molecularly distinct subtypes. However, treatment has yet to exploit these molecular vulnerabilities. Three recent studies sequenced a total of 310 primary tumors and identified that two of the four medulloblastoma subtypes are concomitantly associated with subtype-specific mutations as previously characterized. In contrast, the overwhelming majority of mutations occurred only once in the entire cohort and just 12 genes were recurrently mutated with statistical significance. Perturbations in epigenetic regulation are emerging as a unifying theme in cancer and similarly recurring mutations in epigenetic mechanisms were distributed across all subtypes in medulloblastoma. Designing targeted therapies to such a molecularly diverse disease in the post-genomic era presents new challenges. This will require novel methods to link these nonrecurrent mutations into pathways, and preclinical models that faithfully recapitulate patient driver events. Presently, medulloblastoma reinforces epigenetic mechanisms as a tantalizing therapeutic target in cancers.
doi:10.2217/fon.12.151
PMCID: PMC3602901  PMID: 23231521
cerebellum; chromatin; epigenetics; epigenomics; medulloblastoma; Swi/Snf; systems biology
14.  Subgroup specific structural variation across 1,000 medulloblastoma genomes 
Northcott, Paul A | Shih, David JH | Peacock, John | Garzia, Livia | Morrissy, Sorana | Zichner, Thomas | Stütz, Adrian M | Korshunov, Andrey | Reimand, Juri | Schumacher, Steven E | Beroukhim, Rameen | Ellison, David W | Marshall, Christian R | Lionel, Anath C | Mack, Stephen | Dubuc, Adrian | Yao, Yuan | Ramaswamy, Vijay | Luu, Betty | Rolider, Adi | Cavalli, Florence | Wang, Xin | Remke, Marc | Wu, Xiaochong | Chiu, Readman YB | Chu, Andy | Chuah, Eric | Corbett, Richard D | Hoad, Gemma R | Jackman, Shaun D | Li, Yisu | Lo, Allan | Mungall, Karen L | Nip, Ka Ming | Qian, Jenny Q | Raymond, Anthony GJ | Thiessen, Nina | Varhol, Richard J | Birol, Inanc | Moore, Richard A | Mungall, Andrew J | Holt, Robert | Kawauchi, Daisuke | Roussel, Martine F | Kool, Marcel | Jones, David TW | Witt, Hendrick | Fernandez-L, Africa | Kenney, Anna M | Wechsler-Reya, Robert J | Dirks, Peter | Aviv, Tzvi | Grajkowska, Wieslawa A | Perek-Polnik, Marta | Haberler, Christine C | Delattre, Olivier | Reynaud, Stéphanie S | Doz, François F | Pernet-Fattet, Sarah S | Cho, Byung-Kyu | Kim, Seung-Ki | Wang, Kyu-Chang | Scheurlen, Wolfram | Eberhart, Charles G | Fèvre-Montange, Michelle | Jouvet, Anne | Pollack, Ian F | Fan, Xing | Muraszko, Karin M | Gillespie, G. Yancey | Di Rocco, Concezio | Massimi, Luca | Michiels, Erna MC | Kloosterhof, Nanne K | French, Pim J | Kros, Johan M | Olson, James M | Ellenbogen, Richard G | Zitterbart, Karel | Kren, Leos | Thompson, Reid C | Cooper, Michael K | Lach, Boleslaw | McLendon, Roger E | Bigner, Darell D | Fontebasso, Adam | Albrecht, Steffen | Jabado, Nada | Lindsey, Janet C | Bailey, Simon | Gupta, Nalin | Weiss, William A | Bognár, László | Klekner, Almos | Van Meter, Timothy E | Kumabe, Toshihiro | Tominaga, Teiji | Elbabaa, Samer K | Leonard, Jeffrey R | Rubin, Joshua B | Liau, Linda M | Van Meir, Erwin G | Fouladi, Maryam | Nakamura, Hideo | Cinalli, Giuseppe | Garami, Miklós | Hauser, Peter | Saad, Ali G | Iolascon, Achille | Jung, Shin | Carlotti, Carlos G | Vibhakar, Rajeev | Ra, Young Shin | Robinson, Shenandoah | Zollo, Massimo | Faria, Claudia C | Chan, Jennifer A | Levy, Michael L | Sorensen, Poul HB | Meyerson, Matthew | Pomeroy, Scott L | Cho, Yoon-Jae | Bader, Gary D | Tabori, Uri | Hawkins, Cynthia E | Bouffet, Eric | Scherer, Stephen W | Rutka, James T | Malkin, David | Clifford, Steven C | Jones, Steven JM | Korbel, Jan O | Pfister, Stefan M | Marra, Marco A | Taylor, Michael D
Nature  2012;488(7409):49-56.
Summary
Medulloblastoma, the most common malignant pediatric brain tumour, is currently treated with non-specific cytotoxic therapies including surgery, whole brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, prior attempts to identify targets for therapy have been underpowered due to small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup enriched. The most common region of focal copy number gain is a tandem duplication of the Parkinson’s disease gene SNCAIP, which is exquisitely restricted to Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1 that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGFβ signaling in Group 3, and NF-κB signaling in Group 4 suggest future avenues for rational, targeted therapy.
doi:10.1038/nature11327
PMCID: PMC3683624  PMID: 22832581
15.  ICGC PedBrain: Dissecting the genomic complexity underlying medulloblastoma 
Jones, David TW | Jäger, Natalie | Kool, Marcel | Zichner, Thomas | Hutter, Barbara | Sultan, Marc | Cho, Yoon-Jae | Pugh, Trevor J | Hovestadt, Volker | Stütz, Adrian M | Rausch, Tobias | Warnatz, Hans-Jörg | Ryzhova, Marina | Bender, Sebastian | Sturm, Dominik | Pleier, Sabrina | Cin, Huriye | Pfaff, Elke | Sieber, Laura | Wittmann, Andrea | Remke, Marc | Witt, Hendrik | Hutter, Sonja | Tzaridis, Theophilos | Weischenfeldt, Joachim | Raeder, Benjamin | Avci, Meryem | Amstislavskiy, Vyacheslav | Zapatka, Marc | Weber, Ursula D | Wang, Qi | Lasitschka, Bärbel | Bartholomae, Cynthia C | Schmidt, Manfred | von Kalle, Christof | Ast, Volker | Lawerenz, Chris | Eils, Jürgen | Kabbe, Rolf | Benes, Vladimir | van Sluis, Peter | Koster, Jan | Volckmann, Richard | Shih, David | Betts, Matthew J | Russell, Robert B | Coco, Simona | Tonini, Gian Paolo | Schüller, Ulrich | Hans, Volkmar | Graf, Norbert | Kim, Yoo-Jin | Monoranu, Camelia | Roggendorf, Wolfgang | Unterberg, Andreas | Herold-Mende, Christel | Milde, Till | Kulozik, Andreas E | von Deimling, Andreas | Witt, Olaf | Maass, Eberhard | Rössler, Jochen | Ebinger, Martin | Schuhmann, Martin U | Frühwald, Michael C | Hasselblatt, Martin | Jabado, Nada | Rutkowski, Stefan | von Bueren, André O | Williamson, Dan | Clifford, Steven C | McCabe, Martin G | Collins, V. Peter | Wolf, Stephan | Wiemann, Stefan | Lehrach, Hans | Brors, Benedikt | Scheurlen, Wolfram | Felsberg, Jörg | Reifenberger, Guido | Northcott, Paul A | Taylor, Michael D | Meyerson, Matthew | Pomeroy, Scott L | Yaspo, Marie-Laure | Korbel, Jan O | Korshunov, Andrey | Eils, Roland | Pfister, Stefan M | Lichter, Peter
Nature  2012;488(7409):100-105.
Summary
Medulloblastoma is an aggressively-growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and displays tremendous biological and clinical heterogeneity1. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life.
Four tumour subgroups with distinct clinical, biological and genetic profiles are currently discriminated2,3. WNT tumours, displaying activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens4. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis2. Group 3 & 4 tumours are molecularly less well-characterised, and also present the greatest clinical challenges2,3,5. The full repertoire of genetic events driving this distinction, however, remains unclear.
Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs. Tetraploidy was identified as a frequent early event in Group 3 & 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA-sequencing confirmed these alterations, and revealed the expression of the first medulloblastoma fusion genes. Chromatin modifiers were frequently altered across all subgroups.
These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 & 4 patients.
doi:10.1038/nature11284
PMCID: PMC3662966  PMID: 22832583
16.  Epigenetic inactivation of the tumor suppressor BIN1 drives proliferation of SNF5-deficient tumors 
Cell Cycle  2012;11(10):1956-1965.
Emerging evidence demonstrates that subunits of the SWI/SNF chromatin remodeling complex are specifically mutated at high frequency in a variety of human cancer types. SNF5 (SMARCB1/INI1/BAF47), a core subunit of the SWI/SNF complex, is inactivated in the vast majority of rhabdoid tumors (RT), an aggressive type of pediatric cancer. SNF5-deficient cancers are diploid and genomically stable, suggesting that epigenetically based changes in transcription are key drivers of tumor formation caused by SNF5 loss. However, there is limited understanding of the target genes that drive cancer formation following SNF5 loss. Here we performed comparative expression analyses upon three independent SNF5-deficient cancer data sets from both human and mouse and identify downregulation of the BIN1 tumor suppressor as a conserved event in primary SNF5-deficient cancers. We show that SNF5 recruits the SWI/SNF complex to the BIN1 promoter, and that the marked reduction of BIN1 expression in RT correlates with decreased SWI/SNF occupancy. Functionally, we demonstrate that re-expression of BIN1 specifically compromises the proliferation of SNF5-deficient RT cell lines. Identification of BIN1 as a SNF5 target gene reveals a novel tumor suppressive regulatory mechanism whose disruption can drive cancer formation.
doi:10.4161/cc.20280
PMCID: PMC3359122  PMID: 22544318
BAF47; BIN1; INI1; rhabdoid tumor; SMARCB1; SNF5
17.  Neural development and the ontogeny of central nervous system tumors 
Neuron glia biology  2004;1(2):127-133.
Recent evidence argues that the oncogenesis and growth of CNS tumors occurs through dysregulated molecular and cellular mechanisms of neural development. New insights have emerged that have had a significant impact on both research and treatment of these cancers.
doi:10.1017/s1740925x04000286
PMCID: PMC1388247  PMID: 16520827
embryonal tumors; medulloblastoma; astrocytoma; stem cells; cerebellum; cerebellar granule cells
18.  Integrative genomic analyses identify LIN28 and OLIG2 as markers of survival and metastatic potential in childhood central nervous system primitive neuro-ectodermal brain tumours 
The lancet oncology  2012;13(8):838-848.
Background
Childhood Central Nervous System Primitive Neuro-Ectodermal brain Tumours (CNS-PNETs) are highly aggressive brain tumours for which molecular features and best therapeutic strategy remains unknown. We interrogated a large cohort of these rare tumours in order to identify molecular markers that will enhance clinical management of CNS-PNET.
Methods
Transcriptional and copy number profiles from primary hemispheric CNS-PNETs were examined using clustering, gene and pathways enrichment analyses to discover tumour sub-groups and group-specific molecular markers. Immuno-histochemical and/or gene expression analyses were used to validate and examine the clinical significance of novel sub-group markers in 123 primary CNS-PNETs.
Findings
Three molecular sub-groups of CNS-PNETs distinguished by primitive neural (Group 1), oligo-neural (Group 2) and mesenchymal lineage (Group 3) gene expression signature were identified. Tumour sub-groups exhibited differential expression of cell lineage markers, LIN28 and OLIG2, and correlated with distinct demographics, survival and metastatic incidence. Group 1 tumours affected primarily younger females; male: female ratios were respectively 0.61 (median age 2.9 years; 95% CI: 2.4–5.2; p≤ 0.005), 1.25 (median age 7.9 years; 95% CI: 6–9.7) and 1.63 (median age 5.9 years; 95% CI: 4.9–7.8) for group 1, 2 and 3 patients. Overall outcome was poorest in group 1 patients which had a median survival of 0.8 years (95% CI: 0.47–1.2; p=0.019) as compared to 1.8 years (95% CI: 1.4–2.3) and 4.3 years; (95% CI: 0.82–7.8) respectively for group 2 and 3 patients. Group 3 tumours had the highest incidence of metastases at diagnosis; M0: M+ ratio were respectively 0.9 and 3.9 for group 3, versus group 1 and 2 tumours combined (p=0.037).
Interpretation
LIN28 and OLIG2 represent highly promising, novel diagnostic and prognostic molecular markers for CNS PNET that warrants further evaluation in prospective clinical trials.
doi:10.1016/S1470-2045(12)70257-7
PMCID: PMC3615440  PMID: 22691720
20.  Frequent amplification of a chr19q13.41 microRNA polycistron (C19MC) in aggressive primitive neuro-ectodermal brain tumors 
Cancer cell  2009;16(6):533-546.
SUMMARY
We discovered a high-level amplicon involving the chr19q13.41 microRNA (miRNA) cluster (C19MC) in 11/45(~25%) primary CNS-PNET which results in striking over-expression of miR-517c and 520g. Constitutive expression of miR-517c or 520g promotes in vitro and in vivo oncogenicity, modulates cell survival and robustly enhances growth of untransformed human neural stem cells (hNSCs) in part by upregulating WNT pathway signaling and restricting differentiation of hNSCs. Remarkably, the C19MC amplicon, which is very rare in other brain tumors (1/263), identify an aggressive sub-group of CNS-PNET with distinct gene expression profiles, characteristic histology and dismal survival. Our data implicate miR-517c and 520g as oncogenes and promising biological markers for CNS-PNET and provide important insights into oncogenic properties of the C19MC locus.
doi:10.1016/j.ccr.2009.10.025
PMCID: PMC3431561  PMID: 19962671
21.  Predicting Relapse in Patients With Medulloblastoma by Integrating Evidence From Clinical and Genomic Features 
Journal of Clinical Oncology  2011;29(11):1415-1423.
Purpose
Despite significant progress in the molecular understanding of medulloblastoma, stratification of risk in patients remains a challenge. Focus has shifted from clinical parameters to molecular markers, such as expression of specific genes and selected genomic abnormalities, to improve accuracy of treatment outcome prediction. Here, we show how integration of high-level clinical and genomic features or risk factors, including disease subtype, can yield more comprehensive, accurate, and biologically interpretable prediction models for relapse versus no-relapse classification. We also introduce a novel Bayesian nomogram indicating the amount of evidence that each feature contributes on a patient-by-patient basis.
Patients and Methods
A Bayesian cumulative log-odds model of outcome was developed from a training cohort of 96 children treated for medulloblastoma, starting with the evidence provided by clinical features of metastasis and histology (model A) and incrementally adding the evidence from gene-expression–derived features representing disease subtype–independent (model B) and disease subtype–dependent (model C) pathways, and finally high-level copy-number genomic abnormalities (model D). The models were validated on an independent test cohort (n = 78).
Results
On an independent multi-institutional test data set, models A to D attain an area under receiver operating characteristic (au-ROC) curve of 0.73 (95% CI, 0.60 to 0.84), 0.75 (95% CI, 0.64 to 0.86), 0.80 (95% CI, 0.70 to 0.90), and 0.78 (95% CI, 0.68 to 0.88), respectively, for predicting relapse versus no relapse.
Conclusion
The proposed models C and D outperform the current clinical classification schema (au-ROC, 0.68), our previously published eight-gene outcome signature (au-ROC, 0.71), and several new schemas recently proposed in the literature for medulloblastoma risk stratification.
doi:10.1200/JCO.2010.28.1675
PMCID: PMC3082982  PMID: 21357789
22.  Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas 
Acta Neuropathologica  2012;123(4):473-484.
Medulloblastoma is the most common malignant brain tumor in childhood. Molecular studies from several groups around the world demonstrated that medulloblastoma is not one disease but comprises a collection of distinct molecular subgroups. However, all these studies reported on different numbers of subgroups. The current consensus is that there are only four core subgroups, which should be termed WNT, SHH, Group 3 and Group 4. Based on this, we performed a meta-analysis of all molecular and clinical data of 550 medulloblastomas brought together from seven independent studies. All cases were analyzed by gene expression profiling and for most cases SNP or array-CGH data were available. Data are presented for all medulloblastomas together and for each subgroup separately. For validation purposes, we compared the results of this meta-analysis with another large medulloblastoma cohort (n = 402) for which subgroup information was obtained by immunohistochemistry. Results from both cohorts are highly similar and show how distinct the molecular subtypes are with respect to their transcriptome, DNA copy-number aberrations, demographics, and survival. Results from these analyses will form the basis for prospective multi-center studies and will have an impact on how the different subgroups of medulloblastoma will be treated in the future.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-012-0958-8) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-012-0958-8
PMCID: PMC3306778  PMID: 22358457
Medulloblastoma; Pediatric brain tumor; Subgroups; Meta-analysis
23.  miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma 
Neuro-Oncology  2010;13(2):165-175.
Recent studies have established miR-34a as a key effector of the p53 signaling pathway and have implicated its role in multiple cancer types. Here, we establish that miR-34a induces apoptosis, G2 arrest, and senescence in medulloblastoma and renders these cells more sensitive to chemotherapeutic agents. These effects are mediated in part by the direct post-transcriptional repression of the oncogenic MAGE-A gene family. We demonstrate that miR-34a directly targets the 3′ untranslated regions of MAGE-A genes and decreases MAGE-A protein levels. This decrease in MAGE-A results in a concomitant increase in p53 and its associated transcriptional targets, p21/WAF1/CIP1 and, importantly, miR-34a. This establishes a positive feedback mechanism where miR-34a is not only induced by p53 but increases p53 mRNA and protein levels through the modulation of MAGE-A genes. Additionally, the forced expression of miR-34a or the knockdown of MAGE-A genes by small interfering RNA similarly sensitizes medulloblastoma cells to several classes of chemotherapeutic agents, including mitomycin C and cisplatin. Finally, the analysis of mRNA and micro-RNA transcriptional profiles of a series of primary medulloblastomas identifies a subset of tumors with low miR-34a expression and correspondingly high MAGE-A expression, suggesting the coordinate regulation of these genes. Our work establishes a role for miR-34a in modulating responsiveness to chemotherapy in medulloblastoma and presents a novel positive feedback mechanism involving miR-34a and p53, via direct targeting of MAGE-A.
doi:10.1093/neuonc/noq179
PMCID: PMC3064629  PMID: 21177782
chemosensitivity; MAGE-A; medulloblastoma; miR-34a; p53; positive feedback mechanism
24.  Molecular subgroups of medulloblastoma: the current consensus 
Acta Neuropathologica  2011;123(4):465-472.
Medulloblastoma, a small blue cell malignancy of the cerebellum, is a major cause of morbidity and mortality in pediatric oncology. Current mechanisms for clinical prognostication and stratification include clinical factors (age, presence of metastases, and extent of resection) as well as histological subgrouping (classic, desmoplastic, and large cell/anaplastic histology). Transcriptional profiling studies of medulloblastoma cohorts from several research groups around the globe have suggested the existence of multiple distinct molecular subgroups that differ in their demographics, transcriptomes, somatic genetic events, and clinical outcomes. Variations in the number, composition, and nature of the subgroups between studies brought about a consensus conference in Boston in the fall of 2010. Discussants at the conference came to a consensus that the evidence supported the existence of four main subgroups of medulloblastoma (Wnt, Shh, Group 3, and Group 4). Participants outlined the demographic, transcriptional, genetic, and clinical differences between the four subgroups. While it is anticipated that the molecular classification of medulloblastoma will continue to evolve and diversify in the future as larger cohorts are studied at greater depth, herein we outline the current consensus nomenclature, and the differences between the medulloblastoma subgroups.
doi:10.1007/s00401-011-0922-z
PMCID: PMC3306779  PMID: 22134537
Medulloblastoma; Consensus; Subgroups; SHH; WNT; Group 3; Group 4
25.  Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples 
Acta Neuropathologica  2011;123(4):615-626.
The diagnosis of medulloblastoma likely encompasses several distinct entities, with recent evidence for the existence of at least four unique molecular subgroups that exhibit distinct genetic, transcriptional, demographic, and clinical features. Assignment of molecular subgroup through routine profiling of high-quality RNA on expression microarrays is likely impractical in the clinical setting. The planning and execution of medulloblastoma clinical trials that stratify by subgroup, or which are targeted to a specific subgroup requires technologies that can be economically, rapidly, reliably, and reproducibly applied to formalin-fixed paraffin embedded (FFPE) specimens. In the current study, we have developed an assay that accurately measures the expression level of 22 medulloblastoma subgroup-specific signature genes (CodeSet) using nanoString nCounter Technology. Comparison of the nanoString assay with Affymetrix expression array data on a training series of 101 medulloblastomas of known subgroup demonstrated a high concordance (Pearson correlation r = 0.86). The assay was validated on a second set of 130 non-overlapping medulloblastomas of known subgroup, correctly assigning 98% (127/130) of tumors to the appropriate subgroup. Reproducibility was demonstrated by repeating the assay in three independent laboratories in Canada, the United States, and Switzerland. Finally, the nanoString assay could confidently predict subgroup in 88% of recent FFPE cases, of which 100% had accurate subgroup assignment. We present an assay based on nanoString technology that is capable of rapidly, reliably, and reproducibly assigning clinical FFPE medulloblastoma samples to their molecular subgroup, and which is highly suited for future medulloblastoma clinical trials.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-011-0899-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s00401-011-0899-7
PMCID: PMC3306784  PMID: 22057785
Medulloblastoma; Molecular classification; Clinical trials; NanoString

Results 1-25 (33)