PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Library Preparation and Multiplex Capture for Massive Parallel Sequencing Applications Made Efficient and Easy 
PLoS ONE  2012;7(11):e48616.
During the recent years, rapid development of sequencing technologies and a competitive market has enabled researchers to perform massive sequencing projects at a reasonable cost. As the price for the actual sequencing reactions drops, enabling more samples to be sequenced, the relative price for preparing libraries gets larger and the practical laboratory work becomes complex and tedious. We present a cost-effective strategy for simplified library preparation compatible with both whole genome- and targeted sequencing experiments. An optimized enzyme composition and reaction buffer reduces the number of required clean-up steps and allows for usage of bulk enzymes which makes the whole process cheap, efficient and simple. We also present a two-tagging strategy, which allows for multiplex sequencing of targeted regions. To prove our concept, we have prepared libraries for low-pass sequencing from 100 ng DNA, performed 2-, 4- and 8-plex exome capture and a 96-plex capture of a 500 kb region. In all samples we see a high concordance (>99.4%) of SNP calls when comparing to commercially available SNP-chip platforms.
doi:10.1371/journal.pone.0048616
PMCID: PMC3489721  PMID: 23139805
3.  Decoding a Substantial Set of Samples in Parallel by Massive Sequencing 
PLoS ONE  2011;6(3):e17785.
There has been a dramatic increase of throughput of sequenced bases in the last years but sequencing a multitude of samples in parallel has not yet developed equally. Here we present a novel strategy where the combination of two tags is used to link sequencing reads back to their origins from a pool of samples. By incorporating the tags in two steps sample-handling complexity is lowered by nearly 100 times compared to conventional indexing protocols. In addition, the method described here enables accurate identification and typing of thousands of samples in parallel. In this study the system was designed to test 4992 samples using only 122 tags. To prove the concept of the two-tagging method, the highly polymorphic 2nd exon of DLA-DRB1 in dogs and wolves was sequenced using the 454 GS FLX Titanium Chemistry. By requiring a minimum sequence depth of 20 reads per sample, 94% of the successfully amplified samples were genotyped. In addition, the method allowed digital detection of chimeric fragments. These results demonstrate that it is possible to sequence thousands of samples in parallel without complex pooling patterns or primer combinations. Furthermore, the method is highly scalable as only a limited number of additional tags leads to substantial increase of the sample size.
doi:10.1371/journal.pone.0017785
PMCID: PMC3052374  PMID: 21408018

Results 1-3 (3)