PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Formation of Stylet Sheaths in āere (in air) from Eight Species of Phytophagous Hemipterans from Six Families (Suborders: Auchenorrhyncha and Sternorrhyncha) 
PLoS ONE  2013;8(4):e62444.
Stylet sheath formation is a common feature among phytophagous hemipterans. These sheaths are considered essential to promote a successful feeding event. Stylet sheath compositions are largely unknown and their mode of solidification remains to be elucidated. This report demonstrates the formation and solidification of in āere (in air) produced stylet sheaths by six hemipteran families: Diaphorina citri (Psyllidae, Asian citrus psyllid), Aphis nerii (Aphididae, oleander/milkweed aphid), Toxoptera citricida (Aphididae, brown citrus aphid), Aphis gossypii (Aphididae, cotton melon aphid), Bemisia tabaci biotype B (Aleyrodidae, whitefly), Homalodisca vitripennis (Cicadellidae, glassy-winged sharpshooter), Ferrisia virgata (Pseudococcidae, striped mealybug), and Protopulvinaria pyriformis (Coccidae, pyriform scale). Examination of in āere produced stylet sheaths by confocal and scanning electron microscopy shows a common morphology of an initial flange laid down on the surface of the membrane followed by continuous hollow core structures with sequentially stacked hardened bulbous droplets. Single and multi-branched sheaths were common, whereas mealybug and scale insects typically produced multi-branched sheaths. Micrographs of the in āere formed flanges indicate flange sealing upon stylet bundle extraction in D. citri and the aphids, while the B. tabaci whitefly and H. vitripennis glassy-winged sharpshooter flanges remain unsealed. Structural similarity of in āere sheaths are apparent in stylet sheaths formed in planta, in artificial diets, or in water. The use of ‘Solvy’, a dissolvable membrane, for intact stylet sheath isolation is reported. These observations illustrate for the first time this mode of stylet sheath synthesis adding to the understanding of stylet sheath formation in phytophagous hemipterans and providing tools for future use in structural and compositional analysis.
doi:10.1371/journal.pone.0062444
PMCID: PMC3634779  PMID: 23638086
2.  Survey of Endosymbionts in the Diaphorina citri Metagenome and Assembly of a Wolbachia wDi Draft Genome 
PLoS ONE  2012;7(11):e50067.
Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.
doi:10.1371/journal.pone.0050067
PMCID: PMC3500351  PMID: 23166822
4.  Data mining cDNAs reveals 3 new ssRNA viruses in Nasonia (Hymenoptera: Pteromalidae) 
Insect molecular biology  2010;19(Suppl 1):99-107.
We report three novel small RNA viruses uncovered from cDNA libraries from parasitoid wasps in the genus Nasonia. The genome of this kind of virus is a positive-sense single-stranded RNA with a 3′ poly(A), which facilitates cloning from cDNAs. Two of the viruses, NvitV-1 and NvitV-2, possess a RNA-dependent RNA polymerase that associates them with the family Iflaviridae of the order Picornavirales. A third virus, NvitV-3, is most similar to the Nora virus from Drosophila. A RT-PCR method developed for NvitV-1 indicates that it is a persistent commensal infection of Nasonia.
doi:10.1111/j.1365-2583.2009.00934.x
PMCID: PMC2872476  PMID: 20167021
picorna-like virus; Picornavirales; insect RNA virus; RNA-dependent RNA polymerase
5.  Analysis and Functional Annotation of Expressed Sequence Tags from the Asian Longhorned Beetle, Anoplophora glabripennis  
The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), is one of the most economically and ecologically devastating forest insects to invade North America in recent years. Despite its substantial impact, limited effort has been expended to define the genetic and molecular make-up of this species. Considering the significant role played by late-stadia larvae in host tree decimation, a small-scale EST sequencing project was done using a cDNA library constructed from 5th -instar A. glabripennis. The resultant dataset consisted of 599 high quality ESTs that, upon assembly, yielded 381 potentially unique transcripts. Each of these transcripts was catalogued as to putative molecular function, biological process, and associated cellular component according to the Gene Ontology classification system. Using this annotated dataset, a subset of assembled sequences was identified that are putatively associated with A. glabnpennis development and metamorphosis. This work will contribute to understanding of the diverse molecular mechanisms that underlie coleopteran morphogenesis and enable the future development of novel control strategies for management of this insect pest.
doi:10.1673/031.009.2101
PMCID: PMC3011843  PMID: 19619025
Coleoptera; development; EST; insect; morphogenesis; transcriptome
6.  A dual-genome microarray for the pea aphid, Acyrthosiphon pisum, and its obligate bacterial symbiont, Buchnera aphidicola 
BMC Genomics  2006;7:50.
Background
The best studied insect-symbiont system is that of aphids and their primary bacterial endosymbiont Buchnera aphidicola. Buchnera inhabits specialized host cells called bacteriocytes, provides nutrients to the aphid and has co-speciated with its aphid hosts for the past 150 million years. We have used a single microarray to examine gene expression in the pea aphid, Acyrthosiphon pisum, and its resident Buchnera. Very little is known of gene expression in aphids, few studies have examined gene expression in Buchnera, and no study has examined simultaneously the expression profiles of a host and its symbiont. Expression profiling of aphids, in studies such as this, will be critical for assigning newly discovered A. pisum genes to functional roles. In particular, because aphids possess many genes that are absent from Drosophila and other holometabolous insect taxa, aphid genome annotation efforts cannot rely entirely on homology to the best-studied insect systems. Development of this dual-genome array represents a first attempt to characterize gene expression in this emerging model system.
Results
We chose to examine heat shock response because it has been well characterized both in Buchnera and in other insect species. Our results from the Buchnera of A. pisum show responses for the same gene set as an earlier study of heat shock response in Buchnera for the host aphid Schizaphis graminum. Additionally, analyses of aphid transcripts showed the expected response for homologs of known heat shock genes as well as responses for several genes with unknown functional roles.
Conclusion
We examined gene expression under heat shock of an insect and its bacterial symbiont in a single assay using a dual-genome microarray. Further, our results indicate that microarrays are a useful tool for inferring functional roles of genes in A. pisum and other insects and suggest that the pea aphid genome may contain many gene paralogs that are differentially regulated.
doi:10.1186/1471-2164-7-50
PMCID: PMC1440324  PMID: 16536873
7.  Characterization of the Asian Citrus Psyllid Transcriptome 
Journal of genomics  2014;2:54-58.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is a vector for the causative agents of Huanglongbing, which threatens citrus production worldwide. This study reports and discusses the first D. citri transcriptomes, encompassing the three main life stages of D. citri, egg, nymph and adult. The transcriptomes were annotated using Gene Ontology (GO) and insecticide-related genes within each life stage were identified to aid the development of future D. citri insecticides. Transcriptome assemblies and other sequence data are available for download at the International Asian Citrus Psyllid Genome Consortium website [http://psyllid.org/download] and at NCBI [http://www.ncbi.nlm.nih.gov/bioproject/29447].
doi:10.7150/jgen.7692
PMCID: PMC3914308  PMID: 24511328
Asian Citrus Psyllid; Diaphorina citri Kuwayama

Results 1-7 (7)