PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi 
BMC Genomics  2014;15:148.
Background
The advent of Next Generation Sequencing technologies and corresponding bioinformatics tools allows the definition of transcriptomes in non-model organisms. Non-model organisms are of great ecological and biotechnological significance, and consequently the understanding of their unique metabolic pathways is essential. Several methods that integrate de novo assembly with genome-based assembly have been proposed. Yet, there are many open challenges in defining genes, particularly where genomes are not available or incomplete. Despite the large numbers of transcriptome assemblies that have been performed, quality control of the transcript building process, particularly on the protein level, is rarely performed if ever. To test and improve the quality of the automated transcriptome reconstruction, we used manually defined and curated genes, several of them experimentally validated.
Results
Several approaches to transcript construction were utilized, based on the available data: a draft genome, high quality RNAseq reads, and ESTs. In order to maximize the contribution of the various data, we integrated methods including de novo and genome based assembly, as well as EST clustering. After each step a set of manually curated genes was used for quality assessment of the transcripts. The interplay between the automated pipeline and the quality control indicated which additional processes were required to improve the transcriptome reconstruction. We discovered that E. huxleyi has a very high percentage of non-canonical splice junctions, and relatively high rates of intron retention, which caused unique issues with the currently available tools. While individual tools missed genes and artificially joined overlapping transcripts, combining the results of several tools improved the completeness and quality considerably. The final collection, created from the integration of several quality control and improvement rounds, was compared to the manually defined set both on the DNA and protein levels, and resulted in an improvement of 20% versus any of the read-based approaches alone.
Conclusions
To the best of our knowledge, this is the first time that an automated transcript definition is subjected to quality control using manually defined and curated genes and thereafter the process is improved. We recommend using a set of manually curated genes to troubleshoot transcriptome reconstruction.
doi:10.1186/1471-2164-15-148
PMCID: PMC4028052  PMID: 24559402
RNAseq; Non-model organism; Transcriptome assembly; Manual curation; Emilania huxleyi
2.  General Olfactory Sensitivity Database (GOSdb): Candidate Genes and their Genomic Variations 
Human mutation  2012;34(1):32-41.
Genetic variations in olfactory receptors likely contribute to the diversity of odorant-specific sensitivity phenotypes. Our working hypothesis is that genetic variations in auxiliary olfactory genes, including those mediating transduction and sensory neuronal development, may constitute the genetic basis for general olfactory sensitivity (GOS) and congenital general anosmia (CGA). We thus performed a systematic exploration for auxiliary olfactory genes and their documented variation. This included a literature survey, seeking relevant functional in vitro studies, mouse gene knockouts and human disorders with olfactory phenotypes, as well as data mining in published transcriptome and proteome data for genes expressed in olfactory tissues. In addition, we performed next-generation transcriptome sequencing (RNA-seq) of human olfactory epithelium and mouse olfactory epithelium and bulb, so as to identify sensory-enriched transcripts. Employing a global score system based on attributes of the 11 data sources utilized, we identified a list of 1,680 candidate auxiliary olfactory genes, of which 450 are shortlisted as having higher probability of a functional role. For the top-scoring 136 genes, we identified genomic variants (probably damaging single nucleotide polymorphisms, indels, and copy number deletions) gleaned from public variation repositories. This database of genes and their variants should assist in rationalizing the great interindividual variation in human overall olfactory sensitivity (http://genome.weizmann.ac.il/GOSdb).
doi:10.1002/humu.22212
PMCID: PMC3627721  PMID: 22936402
olfactory candidate genes; congenital general anosmia; RNA-seqIntroduction
3.  Overexpression of AtSHN1/WIN1 Provokes Unique Defense Responses 
PLoS ONE  2013;8(7):e70146.
The plant cell cuticle serves as the first barrier protecting plants from mechanical injury and invading pathogens. The cuticle can be breached by cutinase-producing pathogens and the degradation products may activate pathogenesis signals in the invading pathogens. Cuticle degradation products may also trigger the plant’s defense responses. Botrytis cinerea is an important plant pathogen, capable of attacking and causing disease in a wide range of plant species. Arabidopsis thaliana shn1-1D is a gain-of-function mutant, which has a modified cuticular lipid composition. We used this mutant to examine the effect of altering the whole-cuticle metabolic pathway on plant responses to B. cinerea attack. Following infection with B. cinerea, the shn1-1D mutant discolored more quickly, accumulated more H2O2, and showed accelerated cell death relative to wild-type (WT) plants. Whole transcriptome analysis of B. cinerea-inoculated shn1-1D vs. WT plants revealed marked upregulation of genes associated with senescence, oxidative stress and defense responses on the one hand, and genes involved in the magnitude of defense-response control on the other. We propose that altered cutin monomer content and composition of shn1-1D plants triggers excessive reactive oxygen species accumulation and release which leads to a strong, unique and uncontrollable defense response, resulting in plant sensitivity and death.
doi:10.1371/journal.pone.0070146
PMCID: PMC3726498  PMID: 23922943
4.  RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation 
Molecular Cell  2012;46(5):662-673.
Summary
Embryonic stem cells (ESC) maintain high genomic plasticity, essential for their capacity to enter diverse differentiation pathways. Post-transcriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner.
doi:10.1016/j.molcel.2012.05.023
PMCID: PMC3374598  PMID: 22681888
6.  Widespread ectopic expression of olfactory receptor genes 
BMC Genomics  2006;7:121.
Background
Olfactory receptors (ORs) are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression.
Results
We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion.
Conclusion
The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.
doi:10.1186/1471-2164-7-121
PMCID: PMC1508154  PMID: 16716209
7.  Human Gene-Centric Databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE 
Nucleic Acids Research  2003;31(1):142-146.
Recent enhancements and current research in the GeneCards (GC) (http://bioinfo.weizmann.ac.il/cards/) project are described, including the addition of gene expression profiles and integrated gene locations. Also highlighted are the contributions of specialized associated human gene-centric databases developed at the Weizmann Institute. These include the Unified Database (UDB) (http://bioinfo.weizmann.ac.il/udb) for human genome mapping, the human Chromosome 21 database at the Weizmann Insti-tute (CroW 21) (http://bioinfo.weizmann.ac.il/crow21), and the Human Olfactory Receptor Data Explora-torium (HORDE) (http://bioinfo.weizmann.ac.il/HORDE). The synergistic relationships amongst these efforts have positively impacted the quality, quantity and usefulness of the GeneCards gene compendium.
PMCID: PMC165497  PMID: 12519968

Results 1-7 (7)