PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Transcriptional landscape of repetitive elements in normal and cancer human cells 
BMC Genomics  2014;15(1):583.
Background
Repetitive elements comprise at least 55% of the human genome with more recent estimates as high as two-thirds. Most of these elements are retrotransposons, DNA sequences that can insert copies of themselves into new genomic locations by a “copy and paste” mechanism. These mobile genetic elements play important roles in shaping genomes during evolution, and have been implicated in the etiology of many human diseases. Despite their abundance and diversity, few studies investigated the regulation of endogenous retrotransposons at the genome-wide scale, primarily because of the technical difficulties of uniquely mapping high-throughput sequencing reads to repetitive DNA.
Results
Here we develop a new computational method called RepEnrich to study genome-wide transcriptional regulation of repetitive elements. We show that many of the Long Terminal Repeat retrotransposons in humans are transcriptionally active in a cell line-specific manner. Cancer cell lines display increased RNA Polymerase II binding to retrotransposons than cell lines derived from normal tissue. Consistent with increased transcriptional activity of retrotransposons in cancer cells we found significantly higher levels of L1 retrotransposon RNA expression in prostate tumors compared to normal-matched controls.
Conclusions
Our results support increased transcription of retrotransposons in transformed cells, which may explain the somatic retrotransposition events recently reported in several types of cancers.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-583) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-583
PMCID: PMC4122776  PMID: 25012247
Retrotransposon; Transposable element; Prostate cancer; LINE-1; L1; LTR; HERV; Repetitive element; RNA-seq; ChIP-seq
2.  Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements 
Aging cell  2013;12(2):247-256.
Replicative cellular senescence is an important tumor suppression mechanism and also contributes to aging. Progression of both cancer and aging include significant epigenetic components, but the chromatin changes that take place during cellular senescence are not known. We used formaldehyde assisted isolation of regulatory elements (FAIRE) to map genome-wide chromatin conformations. In contrast to growing cells, whose genomes are rich with features of both open and closed chromatin, FAIRE profiles of senescent cells are significantly smoothened. This is due to FAIRE signal loss in promoters and enhancers of active genes, and FAIRE signal gain in heterochromatic gene poor regions. Chromatin of major retrotransposon classes, Alu, SVA and L1, becomes relatively more open in senescent cells, affecting most strongly the evolutionarily recent elements, and leads to an increase in their transcription and ultimately transposition. Constitutive heterochromatin in centromeric and peri-centromeric regions also becomes relatively more open, and the transcription of satellite sequences increases. The peripheral heterochromatic compartment (PHC) becomes less prominent, and centromere structure becomes notably enlarged. These epigenetic changes progress slowly after the onset of senescence, with some, such as mobilization of retrotransposable elements, becoming prominent only at late times. Many of these changes have also been noted in cancer cells.
doi:10.1111/acel.12047
PMCID: PMC3618682  PMID: 23360310
3.  Death by transposition – the enemy within? 
Here we present and develop the hypothesis that the derepression of endogenous retrotransposable elements (RTEs) – genomic parasites – is an important and hitherto under-unexplored molecular aging process that can potentially occur in most tissues. We further envision that the activation and continued presence of retrotransposition contribute to age-associated tissue degeneration and pathology. Chromatin is a complex and dynamic structure that needs to be maintained in a functional state throughout our lifetime. Studies of diverse species have revealed that chromatin undergoes extensive rearrangements during aging. Cellular senescence, an important component of mammalian aging, has recently been associated with decreased heterochromatinization of normally silenced regions of the genome. These changes lead to the expression of RTEs, culminating in their transposition. RTEs are common in all kingdoms of life, and comprise close to 50% of mammalian genomes. They are tightly controlled, as their activity is highly destabilizing and mutagenic to their resident genomes.
doi:10.1002/bies.201300097
PMCID: PMC3922893  PMID: 24129940
aging; anti-retroviral therapy; cellular senescence; retrotransposition
4.  Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues 
Aging (Albany NY)  2013;5(12):867-883.
Transposable elements (TEs) were discovered by Barbara McClintock in maize and have since been found to be ubiquitous in all living organisms. Transposition is mutagenic and organisms have evolved mechanisms to repress the activity of their endogenous TEs. Transposition in somatic cells is very low, but recent evidence suggests that it may be derepressed in some cases, such as cancer development. We have found that during normal aging several families of retrotransposable elements (RTEs) start being transcribed in mouse tissues. In advanced age the expression culminates in active transposition. These processes are counteracted by calorie restriction (CR), an intervention that slows down aging. Retrotransposition is also activated in age-associated, naturally occurring cancers in the mouse. We suggest that somatic retrotransposition is a hitherto unappreciated aging process. Mobilization of RTEs is likely to be an important contributor to the progressive dysfunction of aging cells.
PMCID: PMC3883704  PMID: 24323947
Aging; epigenetics; chromatin; transposable elements

Results 1-5 (5)