PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Ribosomal Basis of Diamond-Blackfan Anemia: Mutation and Database Update 
Human mutation  2010;31(12):1269-1279.
Diamond-Blackfan Anemia (DBA) is characterized by a defect of erythroid progenitors and, clinically, by anemia and malformations. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Currently nine genes, all encoding ribosomal proteins (RP), have been found mutated in approximately 50% of patients. Experimental evidence supports the hypothesis that DBA is primarily the result of defective ribosome synthesis. By means of a large collaboration among six centers, we report here a mutation update that includes nine genes and 220 distinct mutations, 56 of which are new. The DBA Mutation Database now includes data from 355 patients. Of those where inheritance has been examined, 125 patients carry a de novo mutation and 72 an inherited mutation. Mutagenesis may be ascribed to slippage in 65.5% of indels, whereas CpG dinucleotides are involved in 23% of transitions. Using bioinformatic tools we show that gene conversion mechanism is not common in RP genes mutagenesis, notwithstanding the abundance of RP pseudogenes. Genotype–phenotype analysis reveals that malformations are more frequently associated with mutations in RPL5 and RPL11 than in the other genes. All currently reported DBA mutations together with their functional and clinical data are included in the DBA Mutation Database.
doi:10.1002/humu.21383
PMCID: PMC4485435  PMID: 20960466
Diamond-Blackfan anemia; ribosomal protein; erythropoiesis; ribosome biogenesis
2.  The Beliefs, Motivations, and Expectations of Parents Who Have Enrolled Their Children in a Genetic Biorepository 
Purpose
Little is known about parental attitudes toward return of individual research results (IRRs) in pediatric genomic research. The aim of this study was to understand the views of the parents who enrolled their children in a genomic repository in which IRRs will be returned.
Methods
We conducted focus groups with parents of children with developmental disorders enrolled in the Gene Partnership (GP), a genomic research repository that offers to return IRRs, to learn about their understanding of the GP, motivations for enrolling their children, and expectations regarding the return of IRRs.
Results
Parents hoped to receive IRRs that would help them better understand their children’s condition(s). They understood that this outcome was unlikely, but hoped that their children’s participation in the GP would contribute to scientific knowledge. Most parents wanted to receive all IRRs about their child, even for diseases that were severe and untreatable, citing reasons of personal utility. Parents preferred electronic delivery of the results and wanted to designate their preferences regarding what information they would receive.
Conclusion
It is important for researchers to understand participant expectations in enrolling in a research repository that offers to disclose children’s IRRs in order to effectively communicate the implications to parents during the consenting process.
doi:10.1038/gim.2011.25
PMCID: PMC3763713  PMID: 22241099
biorepository research; individual research results; parent perspectives; pediatric biobank; pediatric genetic research; returning research results
3.  Development of a Scalable Pharmacogenomic Clinical Decision Support Service 
Advances in sequencing technology are making genomic data more accessible within the healthcare environment. Published pharmacogenetic guidelines attempt to provide a clinical context for specific genomic variants; however, the actual implementation to convert genomic data into a clinical report integrated within an electronic medical record system is a major challenge for any hospital. We created a two-part solution that integrates with the medical record system and converts genetic variant results into an interpreted clinical report based on published guidelines. We successfully developed a scalable infrastructure to support TPMT genetic testing and are currently testing approximately two individuals per week in our production version. We plan to release an online variant to clinical interpretation reporting system in order to facilitate translation of pharmacogenetic information into clinical practice.
PMCID: PMC3814487  PMID: 24303299

Results 1-4 (4)