PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("baechler, Dan")
1.  Defining genetic determinants of the Metabolic Syndrome in the Framingham Heart Study using association and structural equation modeling methods 
BMC Proceedings  2009;3(Suppl 7):S50.
The Metabolic Syndrome (MetSyn), which is a clustering of traits including insulin resistance, obesity, hypertension and dyslipidemia, is estimated to have a substantial genetic component, yet few specific genetic targets have been identified. Factor analysis, a sub-type of structural equation modeling (SEM), has been used to model the complex relationships in MetSyn. Therefore, we aimed to define the genetic determinants of MetSyn in the Framingham Heart Study (Offspring Cohort, Exam 7) using the Affymetrix 50 k Human Gene Panel and three different approaches: 1) an association-based "one-SNP-at-a-time" analysis with MetSyn as a binary trait using the World Health Organization criteria; 2) an association-based "one-SNP-at-a-time" analysis with MetSyn as a continuous trait using second-order factor scores derived from four first-order factors; and, 3) a multivariate SEM analysis with MetSyn as a continuous, second-order factor modeled with multiple putative genes, which were represented by latent constructs defined using multiple SNPs in each gene. Results were similar between approaches in that CSMD1 SNPs were associated with MetSyn in Approaches 1 and 2; however, the effects of CSMD1 diminished in Approach 3 when modeled simultaneously with six other genes, most notably CETP and STARD13, which were strongly associated with the Lipids and MetSyn factors, respectively. We conclude that modeling multiple genes as latent constructs on first-order trait factors, most proximal to the gene's function with limited paths directly from genes to the second-order MetSyn factor, using SEM is the most viable approach toward understanding overall gene variation effects in the presence of multiple putative SNPs.
PMCID: PMC2795950  PMID: 20018043
2.  Multivariate association analysis of the components of metabolic syndrome from the Framingham Heart Study 
BMC Proceedings  2009;3(Suppl 7):S42.
Metabolic syndrome, by definition, is the manifestation of multiple, correlated metabolic impairments. It is known to have both strong environmental and genetic contributions. However, isolating genetic variants predisposing to such a complex trait has limitations. Using pedigree data, when available, may well lead to increased ability to detect variants associated with such complex traits. The ability to incorporate multiple correlated traits into a joint analysis may also allow increased detection of associated genes. Therefore, to demonstrate the utility of both univariate and multivariate family-based association analysis and to identify possible genetic variants associated with metabolic syndrome, we performed a scan of the Affymetrix 50 k Human Gene Panel data using 1) each of the traits comprising metabolic syndrome: triglycerides, high-density lipoprotein, systolic blood pressure, diastolic blood pressure, blood glucose, and body mass index, and 2) a composite trait including all of the above, jointly. Two single-nucleotide polymorphisms within the cholesterol ester transfer protein (CETP) gene remained significant even after correcting for multiple testing in both the univariate (p < 5 × 10-7) and multivariate (p < 5 × 10-9) association analysis. Three genes met significance for multiple traits after correction for multiple testing in the univariate analysis, while five genes remained significant in the multivariate association. We conclude that while both univariate and multivariate family-based association analysis can identify genes of interest, our multivariate approach is less affected by multiple testing correction and yields more significant results.
PMCID: PMC2795941  PMID: 20018034
3.  Assessing the impact of global versus local ancestry in association studies 
BMC Proceedings  2009;3(Suppl 7):S107.
Background
To account for population stratification in association studies, principal-components analysis is often performed on single-nucleotide polymorphisms (SNPs) across the genome. Here, we use Framingham Heart Study (FHS) Genetic Analysis Workshop 16 data to compare the performance of local ancestry adjustment for population stratification based on principal components (PCs) estimated from SNPs in a local chromosomal region with global ancestry adjustment based on PCs estimated from genome-wide SNPs.
Methods
Standardized height residuals from unrelated adults from the FHS Offspring Cohort were averaged from longitudinal data. PCs of SNP genotype data were calculated to represent individual's ancestry either 1) globally using all SNPs across the genome or 2) locally using SNPs in adjacent 20-Mbp regions within each chromosome. We assessed the extent to which there were differences in association studies of height depending on whether PCs for global, local, or both global and local ancestry were included as covariates.
Results
The correlations between local and global PCs were low (r < 0.12), suggesting variability between local and global ancestry estimates. Genome-wide association tests without any ancestry adjustment demonstrated an inflated type I error rate that decreased with adjustment for local ancestry, global ancestry, or both. A known spurious association was replicated for SNPs within the lactase gene, and this false-positive association was abolished by adjustment with local or global ancestry PCs.
Conclusion
Population stratification is a potential source of bias in this seemingly homogenous FHS population. However, local and global PCs derived from SNPs appear to provide adequate information about ancestry.
PMCID: PMC2795878  PMID: 20017971
4.  Effect of genotyping error in model-free linkage analysis using microsatellite or single-nucleotide polymorphism marker maps 
BMC Genetics  2005;6(Suppl 1):S153.
Errors while genotyping are inevitable and can reduce the power to detect linkage. However, does genotyping error have the same impact on linkage results for single-nucleotide polymorphism (SNP) and microsatellite (MS) marker maps? To evaluate this question we detected genotyping errors that are consistent with Mendelian inheritance using large changes in multipoint identity-by-descent sharing in neighboring markers. Only a small fraction of Mendelian consistent errors were detectable (e.g., 18% of MS and 2.4% of SNP genotyping errors). More SNP genotyping errors are Mendelian consistent compared to MS genotyping errors, so genotyping error may have a greater impact on linkage results using SNP marker maps. We also evaluated the effect of genotyping error on the power and type I error rate using simulated nuclear families with missing parents under 0, 0.14, and 2.8% genotyping error rates. In the presence of genotyping error, we found that the power to detect a true linkage signal was greater for SNP (75%) than MS (67%) marker maps, although there were also slightly more false-positive signals using SNP marker maps (5 compared with 3 for MS). Finally, we evaluated the usefulness of accounting for genotyping error in the SNP data using a likelihood-based approach, which restores some of the power that is lost when genotyping error is introduced.
doi:10.1186/1471-2156-6-S1-S153
PMCID: PMC1866781  PMID: 16451614
5.  Interaction of gender and body mass index (BMI) reveals evidence of linkage for hypertension in the Framingham Heart Study 
BMC Genetics  2003;4(Suppl 1):S45.
Background
Genetic heterogeneity and complex biologic mechanisms of blood pressure regulation pose significant challenges to the identification of susceptibility loci influencing hypertension. Previous linkage studies have reported regions of interest, but lack consistency across studies. Incorporation of covariates, in particular the interaction between two independent risk factors (gender and BMI) greatly improved our ability to detect linkage.
Results
We report a highly significant signal for linkage to chromosome 2p, a region that has been implicated in previous linkage studies, along with several suggestive linkage regions.
Conclusion
We demonstrate the importance of including covariates in the linkage analysis when the phenotype is complex.
doi:10.1186/1471-2156-4-S1-S45
PMCID: PMC1866481  PMID: 14975113

Results 1-5 (5)