PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Type 2 diabetes mellitus and inflammation: Prospects for biomarkers of risk and nutritional intervention 
Obesity is a major risk factor for type 2 diabetes mellitus (T2DM), which is a significant health problem worldwide. Active disease is associated with low-grade chronic inflammation resulting in part from the activation of the innate immune system. In obesity, this activation leads to the release of pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β and interleukin-6 that block major anabolic cascades downstream of insulin signaling and thus disrupt insulin homeostasis and action. Cytokines also trigger the production of acute-phase reactants such as C-reactive protein, plasminogen activator inhibitor-1, serum amyloid-A, and haptoglobin. The elevated synthesis of pro-inflammatory cytokines and acute-phase proteins (inflammatory network) characterizes the early (or pre-clinical) stages of T2DM and exhibits a graded increase with the disease progression. Current evidence suggests that understanding inflammatory networks can point to new biomarkers that may permit capturing the interaction between genetic and environmental risk factors in the pathogenesis of T2DM. Such biomarkers have a significant public health potential in the prediction of disease occurrence beyond risk factors presently monitored, such as family history, lifestyle assessment and standard clinical chemistry profiles. Furthermore, inflammatory markers may assist in the evaluation of novel strategies for prevention, particularly in relation to micronutrients. This review discusses the current knowledge linking T2DM risk to inflammatory signaling pathways interacting with the innate immunity system and the prospect of inflammatory markers serving as molecular targets for prevention and/or biomarkers for early risk prediction of T2DM. The potential of micronutrients replenishment to improve insulin action by attenuating inflammation is also evaluated in the context of the public health relevance of this approach.
PMCID: PMC3047967  PMID: 21437087
inflammation; biomarkers; prevention; type 2 diabetes
2.  Transforming growth factor beta-1 (TGFB1) and peak bone mass: association between intragenic polymorphisms and quantitative ultrasound of the heel 
Background
Variance of peak bone mass has a substantial genetic component, as has been shown with twin studies examining quantitative measures such as bone mineral density (BMD) and quantitative ultrasound (QUS). Evidence implicating single nucleotide polymorphisms (SNPs) of the transforming growth factor beta-1 (TGFB1) gene is steadily accumulating. However, a comprehensive look at multiple SNPs at this locus for their association with indices of peak bone mass has not been reported.
Methods
A cohort of 653 healthy Caucasian females 18 to 35 years old was genotyped for seven TGFB1 SNPs. Polymorphisms were detected by restriction endonuclease digestion of amplified DNA segments.
Results
The frequencies of the least common allele at G-800A, C-509T, codon 10 (L10P), codon 25 (R25P), codon 263 (T263I), C861-20T, and 713-8 delC loci were 0.07, 0.33, 0.41, 0.08, 0.04, 0.25 and 0.01, respectively. A significant association was seen between QUS Stiffness Index (QUS-SI) and the SNP at codon 10 and the linked promoter SNP, C-509T. This association remained significant after multiple regression was used to incorporate important clinical covariates – age, BMI, level of activity, family history, and caffeine intake – into the model.
Conclusion
The association of QUS-SI with -509T is consistent with a gene-dose effect, while only individuals homozygous for the codon 10P allele showed a significant increase. In this cohort of young healthy Caucasian females, the T allele at position -509 is associated with greater bone mass as measured by calcaneal ultrasound.
doi:10.1186/1471-2474-6-29
PMCID: PMC1182375  PMID: 15955247
3.  Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model 
Background
Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS) deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis.
Methods
To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8) with 0.6% dl-homocysteine (hCySH) for the first 8 weeks of life in comparison to controls (n = 10), and studied biochemical, biomechanical and morphologic effects of this nutritional intervention.
Results
hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca2+/PO43- and lower Ca2+/CO32- molar ratios than in controls. Mineral crystallization was unchanged.
Conclusion
In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic disease is small. We also conclude that the hCySH-supplemented chick is a promising model for study of the connective tissue abnormalities associated with homocystinuria and an important alternative model to the CBS knock-out mouse.
doi:10.1186/1471-2474-4-2
PMCID: PMC151688  PMID: 12597778
4.  Genetics University of Toronto Thrombophilia Study in Women (GUTTSI): genetic and other risk factors for venous thromboembolism in women 
Background
Women may be at increased risk for venous thromboembolism (VTE) as compared with men. We studied the effects of genetic and biochemical markers of thrombophilia in women, in conjunction with other established risk factors for VTE.
Method
The present retrospective case-control study was conducted in a thrombosis treatment programme at a large Toronto hospital. The cases were 129 women aged 16-79 years with objectively confirmed VTE. Age-matched control individuals were women who were free of venous thrombosis. Neither cases nor control individuals had known cardiovascular disease. Participants were interviewed regarding personal risk factors for VTE, including smoking, history of malignancy, pregnancy, and oestrogen or oral contraceptive use. Blood specimens were analyzed for common single nucleotide polymorphisms of prothrombin, factor V and methylenetetrahydrofolate reductase (MTHFR; C677T, A1298C and T1317C), and the A66G polymorphism for methionine synthase reductase (MTRR).Fasting plasma homocysteine was also analyzed.
Results
Women with VTE were significantly more likely than female control individuals to carry the prothrombin polymorphism and the factor V polymorphism, or to have fasting hyperhomocysteinaemia. Homozygosity for the C677T MTHFR gene was not a significant risk factor for VTE, or were the A1298C or T1317C MTHFR homozygous variants. Also, the A66G MTRR homozygous state did not confer an increased risk for VTE.
Conclusion
Prothrombin and factor V polymorphisms increased the risk for VTE in women, independent from other established risk factors. Although hyperhomocysteinaemia also heightens this risk, common polymorphisms in two genes that are responsible for homocysteine remethylation do not. These findings are consistent with previous studies that included both men and women.
doi:10.1186/cvm-2-3-141
PMCID: PMC56202  PMID: 11806787
case-control study; deep vein thrombosis; factor V gene; folate; genetics; homocysteine; methionine synthase reductase; methylenetetrahydrofolate reductase; prothrombin gene; pulmonary embolism; risk; thrombophilia; venous thromboembolism; women's health
5.  Metabolic Syndrome features and risk of neural tube defects 
Background
Maternal obesity and pre-pregnancy diabetes mellitus, features of the metabolic syndrome (MetSyn), are individual risk factors for neural tube defects (NTD). Whether they, in combination with additional features of MetSyn, alter this risk is not known. We evaluated the risk of NTD in association with maternal features of the MetSyn.
Methods
We used a population-based case-control study design in the province of Ontario, Canada. Cases and controls were derived from women who underwent antenatal maternal screening (MSS) at 15 to 20 weeks' gestation. There were 89 maternal cases with, and 434 controls without, an NTD-affected singleton pregnancy. Maternal features of MetSyn were defined by the presence of pre-pregnancy diabetes mellitus, body weight ≥ 90th centile among controls, non-white ethnicity and/or serum highly sensitive C-reactive protein (hsCRP) ≥ 75th centile of controls. Since hsCRP naturally increases in pregnancy, analyses were performed with, and without, the inclusion of hsCRP in the model.
Results
Mean hsCRP concentrations were exceptionally high among study cases and controls (6.1 and 6.4 mg/L, respectively). When hsCRP was excluded from the model, the adjusted odds ratios for NTD were 1.9 (95% confidence interval 1.1–3.4) in the presence 1 feature of MetSyn, and 6.1 (1.1–32.9) in the presence of 2 or more features. When hsCRP was included, the respective risk estimates were attenuated to 1.6 (0.88–2.8) and 3.1 (1.2–8.3).
Conclusion
We found about 2-fold and 6-fold higher risk for NTD in the presence 1, and 2 or more features, of the metabolic syndrome, respectively. It is not clear whether this risk is altered by the presence of a high serum hsCRP concentration.
doi:10.1186/1471-2393-7-21
PMCID: PMC2039731  PMID: 17880716

Results 1-5 (5)