PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora  
Journal of Experimental Botany  2012;63(11):4191-4212.
The aim of this study was to investigate the molecular mechanisms underlying drought acclimation in coffee plants by the identification of candidate genes (CGs) using different approaches. The first approach used the data generated during the Brazilian Coffee expressed sequence tag (EST) project to select 13 CGs by an in silico analysis (electronic northern). The second approach was based on screening macroarrays spotted with plasmid DNA (coffee ESTs) with separate hybridizations using leaf cDNA probes from drought-tolerant and susceptible clones of Coffea canephora var. Conilon, grown under different water regimes. This allowed the isolation of seven additional CGs. The third approach used two-dimensional gel electrophoresis to identify proteins displaying differential accumulation in leaves of drought-tolerant and susceptible clones of C. canephora. Six of them were characterized by MALDI-TOF-MS/MS (matrix-assisted laser desorption-time of flight-tandem mass spectrometry) and the corresponding proteins were identified. Finally, additional CGs were selected from the literature, and quantitative real-time polymerase chain reaction (qPCR) was performed to analyse the expression of all identified CGs. Altogether, >40 genes presenting differential gene expression during drought acclimation were identified, some of them showing different expression profiles between drought-tolerant and susceptible clones. Based on the obtained results, it can be concluded that factors involved a complex network of responses probably involving the abscisic signalling pathway and nitric oxide are major molecular determinants that might explain the better efficiency in controlling stomata closure and transpiration displayed by drought-tolerant clones of C. canephora.
doi:10.1093/jxb/ers103
PMCID: PMC3398449  PMID: 22511801
Coffea canephora; differential expression; drought acclimation; proteomic; real-time PCR; candidate gene
2.  Transcriptional profile of maize roots under acid soil growth 
BMC Plant Biology  2010;10:196.
Background
Aluminum (Al) toxicity is one of the most important yield-limiting factors of many crops worldwide. The primary symptom of Al toxicity syndrome is the inhibition of root growth leading to poor water and nutrient absorption. Al tolerance has been extensively studied using hydroponic experiments. However, unlike soil conditions, this method does not address all of the components that are necessary for proper root growth and development. In the present study, we grew two maize genotypes with contrasting tolerance to Al in soil containing toxic levels of Al and then compared their transcriptomic responses.
Results
When grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17) showed greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the tolerant genotype (Cat100-6). Transcriptome profiling showed a higher number of genes differentially expressed in S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional family and two unknown proteins.
Conclusions
This work provides the first characterization of the physiological and transcriptional responses of maize roots when grown in acid soil containing toxic levels of Al. The transcriptome profiles highlighted several pathways that are related to Al toxicity and tolerance during growth in acid soil. We found several genes that were not found in previous studies using hydroponic experiments, increasing our understanding of plant responses to acid soil. The use of two germplasms with markedly different Al tolerances allowed the identification of genes that are a valuable tool for assessing the mechanisms of Al tolerance in maize in acid soil.
doi:10.1186/1471-2229-10-196
PMCID: PMC2956545  PMID: 20828383
3.  Identification of drought-responsive genes in roots of upland rice (Oryza sativa L) 
BMC Genomics  2008;9:485.
Background
Rice (Oryza sativa L.) germplasm represents an extraordinary source of genes that control traits of agronomic importance such as drought tolerance. This diversity is the basis for the development of new cultivars better adapted to water restriction conditions, in particular for upland rice, which is grown under rainfall. The analyses of subtractive cDNA libraries and differential protein expression of drought tolerant and susceptible genotypes can contribute to the understanding of the genetic control of water use efficiency in rice.
Results
Two subtractive libraries were constructed using cDNA of drought susceptible and tolerant genotypes submitted to stress against cDNA of well-watered plants. In silico analysis revealed 463 reads, which were grouped into 282 clusters. Several genes expressed exclusively in the tolerant or susceptible genotypes were identified. Additionally, proteome analysis of roots from stressed plants was performed and 22 proteins putatively associated to drought tolerance were identified by mass spectrometry.
Conclusion
Several genes and proteins involved in drought-response, as well as genes with no described homologs were identified. Genes exclusively expressed in the tolerant genotype were, in general, related to maintenance of turgor and cell integrity. In contrast, in the susceptible genotype, expression of genes involved in protection against cell damage was not detected. Several protein families identified in the proteomic analysis were not detected in the cDNA analysis. There is an indication that the mechanisms of susceptibility to drought in upland rice are similar to those of lowland varieties.
doi:10.1186/1471-2164-9-485
PMCID: PMC2605477  PMID: 18922162
4.  Insights into the Musa genome: Syntenic relationships to rice and between Musa species 
BMC Genomics  2008;9:58.
Background
Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome.
Results
We produced 1.4 Mb of Musa sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya.
Conclusion
These results point to the utility of comparative analyses between distantly-related monocot species such as rice and Musa for improving our understanding of monocot genome evolution. Sequencing the genome of M. acuminata would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.
doi:10.1186/1471-2164-9-58
PMCID: PMC2270835  PMID: 18234080
5.  ESTs from a wild Arachis species for gene discovery and marker development 
BMC Plant Biology  2007;7:7.
Background
Due to its origin, peanut has a very narrow genetic background. Wild relatives can be a source of genetic variability for cultivated peanut. In this study, the transcriptome of the wild species Arachis stenosperma accession V10309 was analyzed.
Results
ESTs were produced from four cDNA libraries of RNAs extracted from leaves and roots of A. stenosperma. Randomly selected cDNA clones were sequenced to generate 8,785 ESTs, of which 6,264 (71.3%) had high quality, with 3,500 clusters: 963 contigs and 2537 singlets. Only 55.9% matched homologous sequences of known genes. ESTs were classified into 23 different categories according to putative protein functions. Numerous sequences related to disease resistance, drought tolerance and human health were identified. Two hundred and six microsatellites were found and markers have been developed for 188 of these. The microsatellite profile was analyzed and compared to other transcribed and genomic sequence data.
Conclusion
This is, to date, the first report on the analysis of transcriptome of a wild relative of peanut. The ESTs produced in this study are a valuable resource for gene discovery, the characterization of new wild alleles, and for marker development. The ESTs were released in the [GenBank:EH041934 to EH048197].
doi:10.1186/1471-2229-7-7
PMCID: PMC1808460  PMID: 17302987

Results 1-5 (5)