PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments 
Journal of Experimental Botany  2013;64(14):4461-4478.
Citrus is the first tree crop in terms of fruit production. The colour of Citrus fruit is one of the main quality attributes, caused by the accumulation of carotenoids and their derivative C30 apocarotenoids, mainly β-citraurin (3-hydroxy-β-apo-8′-carotenal), which provide an attractive orange-reddish tint to the peel of oranges and mandarins. Though carotenoid biosynthesis and its regulation have been extensively studied in Citrus fruits, little is known about the formation of C30 apocarotenoids. The aim of this study was to the identify carotenoid cleavage enzyme(s) [CCD(s)] involved in the peel-specific C30 apocarotenoids. In silico data mining revealed a new family of five CCD4-type genes in Citrus. One gene of this family, CCD4b1, was expressed in reproductive and vegetative tissues of different Citrus species in a pattern correlating with the accumulation of C30 apocarotenoids. Moreover, developmental processes and treatments which alter Citrus fruit peel pigmentation led to changes of β-citraurin content and CCD4b1 transcript levels. These results point to the involvement of CCD4b1 in β-citraurin formation and indicate that the accumulation of this compound is determined by the availability of the presumed precursors zeaxanthin and β-cryptoxanthin. Functional analysis of CCD4b1 by in vitro assays unequivocally demonstrated the asymmetric cleavage activity at the 7′,8′ double bond in zeaxanthin and β-cryptoxanthin, confirming its role in C30 apocarotenoid biosynthesis. Thus, a novel plant carotenoid cleavage activity targeting the 7′,8′ double bond of cyclic C40 carotenoids has been identified. These results suggest that the presented enzyme is responsible for the biosynthesis of C30 apocarotenoids in Citrus which are key pigments in fruit coloration.
doi:10.1093/jxb/ert260
PMCID: PMC3808326  PMID: 24006419
Apocarotenoid; carotenoid cleavage dioxygenase; carotenoid; β-citraurin; Citrus; fruit coloration.
2.  The monoterpene limonene in orange peels attracts pests and microorganisms 
Plant Signaling & Behavior  2011;6(11):1820-1823.
Plant volatiles include terpenoids, which are generally involved in plant defense, repelling pests and pathogens and attracting insects for herbivore control, pollination and seed dispersal. Orange fruits accumulate the monoterpene limonene at high levels in the oil glands of their fruit peels. When limonene production was downregulated in orange fruits by the transgenic expression of a limonene synthase (CitMTSE1) in the antisense configuration, these fruits were resistant to the fungus Penicillium digitatum (Pers.) Sacc. and the bacterium Xanthomonas citri subsp. citri and were less attractive to the medfly pest Ceratitis capitata. These responses were reversed when the antisense transgenic orange fruits were treated with limonene. To gain more insight into the role of the limonene concentration in fruit responses to pests and pathogens, we attempted to overexpress CitMTSE1 in the sense configuration in transgenic orange fruits. Only slight increases in the amount of limonene were found in sense transgenic fruits, maybe due to the detrimental effect that excessive limonene accumulation would have on plant development. Collectively, these results suggest that when limonene reaches peak levels as the fruit develops, it becomes a signal for pest and pathogen attraction, which facilitate access to the fruit for pulp consumers and seed dispersers.
doi:10.4161/psb.6.11.16980
PMCID: PMC3329358  PMID: 22212123
co-evolution; defense; repellency; secondary metabolism; seed dispersers; trophic interaction; volatiles
3.  Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant 
Journal of Experimental Botany  2012;63(7):2753-2767.
Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.
doi:10.1093/jxb/err461
PMCID: PMC3346234  PMID: 22315241
ABA-deficient mutant fruit; abiotic stress; abscisic acid (ABA); citrus; gene expression; microarray; peel damage; water stress
4.  Identification of a GCC transcription factor responding to fruit colour change events in citrus through the transcriptomic analyses of two mutants 
BMC Plant Biology  2010;10:276.
Background
External ripening in Citrus fruits is morphologically characterized by a colour shift from green to orange due to the degradation of chlorophylls and the accumulation of carotenoid pigments. Although numerous genes coding for enzymes involved in such biochemical pathways have been identified, the molecular control of this process has been scarcely studied. In this work we used the Citrus clementina mutants 39B3 and 39E7, showing delayed colour break, to isolate genes potentially related to the regulation of peel ripening and its physiological or biochemical effects.
Results
Pigment analyses revealed different profiles of carotenoid and chlorophyll modification in 39B3 and 39E7 mutants. Flavedo from 39B3 fruits showed an overall delay in carotenoid accumulation and chlorophyll degradation, while the flavedo of 39E7 was devoid of the apocarotenoid β-citraurin among other carotenoid alterations. A Citrus microarray containing about 20,000 cDNA fragments was used to identify genes that were differentially expressed during colour change in the flavedo of 39B3 and 39E7 mutants respect to the parental variety. The results highlighted 73 and 90 genes that were respectively up- and down-regulated in both mutants. CcGCC1 gene, coding for a GCC type transcriptional factor, was found to be down-regulated. CcGCC1 expression was strongly induced at the onset of colour change in the flavedo of parental clementine fruit. Moreover, treatment of fruits with gibberellins, a retardant of external ripening, delayed both colour break and CcGCC1 overexpression.
Conclusions
In this work, the citrus fruit ripening mutants 39B3 and 39E7 have been characterized at the phenotypic, biochemical and transcriptomic level. A defective synthesis of the apocarotenoid β-citraurin has been proposed to cause the yellowish colour of fully ripe 39E7 flavedo. The analyses of the mutant transcriptomes revealed that colour change during peel ripening was strongly associated with a major mobilization of mineral elements and with other previously known metabolic and photosynthetic changes. The expression of CcGCC1 was associated with peel ripening since CcGCC1 down-regulation correlated with a delay in colour break induced by genetic, developmental and hormonal causes.
doi:10.1186/1471-2229-10-276
PMCID: PMC3014968  PMID: 21159189
5.  A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection 
BMC Plant Biology  2010;10:194.
Background
Postharvest losses of citrus fruit due to green mold decay, caused by the fungus Penicillium digitaum, have a considerable economic impact. However, little is known about the molecular processes underlying the response of citrus fruit to P. digitatum.
Results
Here we describe the construction of a subtracted cDNA library enriched in citrus genes preferentially expressed in response to pathogen infection followed by cDNA macroarray hybridization to investigate gene expression during the early stages of colonization of the fruit's peel by P. digitatum. Sequence annotation of clones from the subtracted cDNA library revealed that induction of secondary and amino acid metabolisms constitutes the major response of citrus fruits to P. digitatum infection. Macroarray hybridization analysis was conducted with RNA from either control, wounded, ethylene treated or P. digitatum infected fruit. Results indicate an extensive overlap in the response triggered by the three treatments, but also demonstrated specific patterns of gene expression in response to each stimulus. Collectively our data indicate a significant presence of isoprenoid, alkaloid and phenylpropanoid biosynthetic genes in the transcriptomic response of citrus fruits to P. digitatum infection. About half of the genes that are up-regulated in response to pathogen infection are also induced by ethylene, but many examples of ethylene-independent gene regulation were also found. Two notable examples of this regulation pattern are the genes showing homology to a caffeine synthase and a berberine bridge enzyme, two proteins involved in alkaloid biosynthesis, which are among the most induced genes upon P. digitatum infection but are not responsive to ethylene.
Conclusions
This study provided the first global picture of the gene expression changes in citrus fruit in response to P. digitatum infection, emphasizing differences and commonalities with those triggered by wounding or exogenous ethylene treatment. Interpretation of the differentially expressed genes revealed that metabolism is redirected to the synthesis of isoprenes, alkaloids and phenylpropanoids.
doi:10.1186/1471-2229-10-194
PMCID: PMC2956543  PMID: 20807411
6.  Molecular and functional characterization of a novel chromoplast-specific lycopene β-cyclase from Citrus and its relation to lycopene accumulation 
Journal of Experimental Botany  2009;60(6):1783-1797.
Carotenoids are the main pigments responsible of the colouration of Citrus fruits. The β-cyclization of lycopene, catalysed by the lycopene β-cyclases (β-LCY), seems to be a key regulatory step of the carotenoid pathway. In the present study, two β-LCYs from orange fruits (Citrus sinensis), named Csβ-LCY1 and Csβ-LCY2 have been isolated and the activity of the encoded proteins was demonstrated by functional analysis. Csβ-LCY1 was expressed at low levels and remained relatively constant during fruit ripening while Csβ-LCY2 showed a chromoplast-specific expression and a marked induction in both peel and pulp of orange fruits in parallel with the accumulation of β,β-xanthophylls. The potential involvement of Csβ-LCY2 in the accumulation of lycopene, characteristic of some Citrus species such as red grapefruits, was investigated. Expression of Csβ-LCY2 and another seven carotenoid biosynthetic genes were studied in the peel and pulp of the high lycopene-accumulating grapefruit, Star Ruby, and compared with those of ordinary Navel orange. In Star Ruby, the accumulation of lycopene during fruit maturation was associated with a substantial reduction in the expression of both β-LCY2 and β-CHX genes with respect to Navel orange. Moreover, two different alleles of β-LCY2: β-LCY2a and β-LCY2b were isolated from both genotypes, and functional assays demonstrated that the lycopene β-cyclase activity of the allele b was almost null. Interestingly, Star Ruby grapefruit predominantly expressed the unfunctional β-LCY2b allele during fruit ripening whereas Navel oranges preferably expressed the functional allele. It is suggested that the presence of diverse alleles of the β-LCY2 gene, encoding enzymes with altered activity, with different transcript accumulation may be an additional regulatory mechanism of carotenoid synthesis involved in the accumulation of lycopene in red grapefruits.
doi:10.1093/jxb/erp048
PMCID: PMC2671624  PMID: 19325166
Carotenoids; Citrus fruit; gene expression; grapefruit; lycopene; lycopene β-cyclase; orange fruit

Results 1-6 (6)