PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
author:("Ye, changing")
1.  Role of unfolded protein response in plant virus infection 
Plant Signaling & Behavior  2011;6(8):1212-1215.
A new study of Potato virus X (PVX) revealed that a viral movement protein, named TGBp3, triggers the unfolded protein response (UPR) which monitors accumulation of aberrant proteins the endoplasmic reticulum (ER) and targets them for degradation. The PVX TGBp3 resides in ER and activates bZIP60, a transcription factor involved in the UPR pathway. Knockdown of bZIP60 hampers virus infection in protoplasts and whole plants. Preliminary evidence indicates that UPR regulates cellular cytotoxicity that could otherwise lead to cell death if the PVX TGBp3 reaches high levels in the ER. SKP1 expression appears to be linked to bZIP60 and is a component of the SCF-complex mediating proteasomal degradation of cellular substrates. SKP1 expression is induced by PVX TGBp3 and plays a role in regulating PVX spread in whole plants. We propose that SKP1 might be linked to TGBp1-mediated degradation of AGO1.
doi:10.4161/psb.6.8.16048
PMCID: PMC3260726  PMID: 21758013
potato virus X; unfolded protein response; bZIP60; SKP1; viral movement protein; triple gene block proteins; TGB3
2.  Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts 
BMC Plant Biology  2010;10:291.
Background
Post transcriptional gene silencing (PTGS) is a mechanism harnessed by plant biologists to knock down gene expression. siRNAs contribute to PTGS that are synthesized from mRNAs or viral RNAs and function to guide cellular endoribonucleases to target mRNAs for degradation. Plant biologists have employed electroporation to deliver artificial siRNAs to plant protoplasts to study gene expression mechanisms at the single cell level. One drawback of electroporation is the extensive loss of viable protoplasts that occurs as a result of the transfection technology.
Results
We employed fluorescent conjugated polymer nanoparticles (CPNs) to deliver siRNAs and knockdown a target gene in plant protoplasts. CPNs are non toxic to protoplasts, having little impact on viability over a 72 h period. Microscopy and flow cytometry reveal that CPNs can penetrate protoplasts within 2 h of delivery. Cellular uptake of CPNs/siRNA complexes were easily monitored using epifluorescence microscopy. We also demonstrate that CPNs can deliver siRNAs targeting specific genes in the cellulose biosynthesis pathway (NtCesA-1a and NtCesA-1b).
Conclusions
While prior work showed that NtCesA-1 is a factor involved in cell wall synthesis in whole plants, we demonstrate that the same gene plays an essential role in cell wall regeneration in isolated protoplasts. Cell wall biosynthesis is central to cell elongation, plant growth and development. The experiments presented here shows that NtCesA is also a factor in cell viability. We show that CPNs are valuable vehicles for delivering siRNAs to plant protoplasts to study vital cellular pathways at the single cell level.
doi:10.1186/1471-2229-10-291
PMCID: PMC3023792  PMID: 21192827

Results 1-2 (2)