PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Identification of differentially expressed genes induced by Bamboo mosaic virus infection in Nicotiana benthamiana by cDNA-amplified fragment length polymorphism 
BMC Plant Biology  2010;10:286.
Background
The genes of plants can be up- or down-regulated during viral infection to influence the replication of viruses. Identification of these differentially expressed genes could shed light on the defense systems employed by plants and the mechanisms involved in the adaption of viruses to plant cells. Differential gene expression in Nicotiana benthamiana plants in response to infection with Bamboo mosaic virus (BaMV) was revealed using cDNA-amplified fragment length polymorphism (AFLP).
Results
Following inoculation with BaMV, N. benthamiana displayed differential gene expression in response to the infection. Isolation, cloning, and sequencing analysis using cDNA-AFLP furnished 90 cDNA fragments with eight pairs of selective primers. Fifteen randomly selected genes were used for a combined virus-induced gene silencing (VIGS) knockdown experiment, using BaMV infection to investigate the roles played by these genes during viral infection, specifically addressing the means by which these genes influence the accumulation of BaMV protein. Nine of the 15 genes showed either a positive or a negative influence on the accumulation of BaMV protein. Six knockdown plants showed an increase in the accumulation of BaMV, suggesting that they played a role in the resistance to viral infection, while three plants showed a reduction in coat protein, indicating a positive influence on the accumulation of BaMV in plants. An interesting observation was that eight of the nine plants showing an increase in BaMV coat protein were associated with cell rescue, defense, death, aging, signal transduction, and energy production.
Conclusions
This study reports an efficient and straightforward method for the identification of host genes involved in viral infection. We succeeded in establishing a cDNA-AFLP system to help track changes in gene expression patterns in N. benthamiana plants when infected with BaMV. The combination of both DNA-AFLP and VIGS methodologies made it possible to screen a large number of genes and identify those associated with infections of plant viruses. In this report, 9 of the 15 analyzed genes exhibited either a positive or a negative influence on the accumulation of BaMV in N. benthamiana plants.
doi:10.1186/1471-2229-10-286
PMCID: PMC3024324  PMID: 21184690
2.  Commensal bacteria regulate TLR3-dependent inflammation following skin injury 
Nature medicine  2009;15(12):1377-1382.
The normal microflora of the skin includes staphylococcal species that will induce inflammation when present below the dermis but are tolerated on the epidermal surface without initiating inflammation. Here we reveal a previously unknown mechanism by which a product of staphylococci inhibits skin inflammation. This inhibition is mediated by staphylococcal lipoteichoic acid (LTA), and acts selectively on keratinocytes triggered through Toll-like receptor (TLR) 3. The significance of this is seen by observations that TLR3 activation is required for normal inflammation after injury, and that keratinocytes require TLR3 to respond to RNA from damaged cells with the release of inflammatory cytokines. Staphylococcal LTA inhibits both inflammatory cytokine release from keratinocytes and inflammation triggered by injury through a TLR2-dependent mechanism. These findings show for the first time that the skin epithelium requires TLR3 for normal inflammation after wounding and that the microflora can modulate specific cutaneous inflammatory responses.
doi:10.1038/nm.2062
PMCID: PMC2880863  PMID: 19966777

Results 1-2 (2)