Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Local overexpression of Su(H)-MAPK variants affects Notch target gene expression and adult phenotypes in Drosophila 
Data in Brief  2015;5:852-863.
In Drosophila, Notch and EGFR signalling pathways are closely intertwined. Their relationship is mostly antagonistic, and may in part be based on the phosphorylation of the Notch signal transducer Suppressor of Hairless [Su(H)] by MAPK. Su(H) is a transcription factor that together with several cofactors regulates the expression of Notch target genes.
Here we address the consequences of a local induction of three Su(H) variants on Notch target gene expression. To this end, wild-type Su(H), a phospho-deficient Su(H)MAPK-ko and a phospho-mimetic Su(H)MAPK-ac isoform were overexpressed in the central domain of the wing anlagen. The expression of the Notch target genes cut, wingless, E(spl)m8-HLH and vestigial, was monitored. For the latter two, reporter genes were used (E(spl)m8-lacZ, vgBE-lacZ). In general, Su(H)MAPK-ko induced a stronger response than wild-type Su(H), whereas the response to Su(H)MAPK-ac was very weak. Notch target genes cut, wingless and vgBE-lacZ were ectopically activated, whereas E(spl)m8-lacZ was repressed by overexpression of Su(H) proteins. In addition, in epistasis experiments an activated form of the EGF-receptor (DERact) or the MAPK (rlSEM) and individual Su(H) variants were co-overexpressed locally, to compare the resultant phenotypes in adult flies (thorax, wings and eyes) as well as to assay the response of the Notch target gene cut in cell clones.
PMCID: PMC4669530  PMID: 26702412
Drosophila; EGFR signalling; MAPK; Notch signalling; Su(H)
2.  Analysis of knockout mutants reveals non-redundant functions of poly(ADP-ribose)polymerase isoforms in Arabidopsis 
Plant Molecular Biology  2015;89(4-5):319-338.
The enzyme poly(ADP-ribose)polymerase (PARP) has a dual function being involved both in the poly(ADP-ribosyl)ation and being a constituent of the NAD+ salvage pathway. To date most studies, both in plant and non-plant systems, have focused on the signaling role of PARP in poly(ADP-ribosyl)ation rather than any role that can be ascribed to its metabolic function. In order to address this question we here used a combination of expression, transcript and protein localization studies of all three PARP isoforms of Arabidopsis alongside physiological analysis of the corresponding mutants. Our analyses indicated that whilst all isoforms of PARP were localized to the nucleus they are also present in non-nuclear locations with parp1 and parp3 also localised in the cytosol, and parp2 also present in the mitochondria. We next isolated and characterized insertional knockout mutants of all three isoforms confirming a complete knockout in the full length transcript levels of the target genes as well as a reduced total leaf NAD hydrolase activity in the two isoforms (PARP1, PARP2) that are highly expressed in leaves. Physiological evaluation of the mutant lines revealed that they displayed distinctive metabolic and root growth characteristics albeit unaltered leaf morphology under optimal growth conditions. We therefore conclude that the PARP isoforms play non-redundant non-nuclear metabolic roles and that their function is highly important in rapidly growing tissues such as the shoot apical meristem, roots and seeds.
Electronic supplementary material
The online version of this article (doi:10.1007/s11103-015-0363-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4631723  PMID: 26428915
Arabidopsis thaliana; Central carbon metabolism; T-DNA mutants; Metabolite profiling; NAD(P)(H) metabolism; Poly(ADP-ribose)polymerase; Root
3.  Timing Is Everything: Highly Specific and Transient Expression of a MAP Kinase Determines Auxin-Induced Leaf Venation Patterns in Arabidopsis  
Molecular Plant  2014;7(11):1637-1652.
The Arabidopsis MAP kinase AtMPK10 has long been considered as a pseudo-gene without visible function for the plant. Here we show that AtMPK10 is functional only in a very narrow time window in leaves at sites of local auxin maxima where it regulates leaf venation complexity together with the upstream kinase AtMKK2.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules present in all eukaryotes. In plants, MAPK cascades were shown to regulate cell division, developmental processes, stress responses, and hormone pathways. The subgroup A of Arabidopsis MAPKs consists of AtMPK3, AtMPK6, and AtMPK10. AtMPK3 and AtMPK6 are activated by their upstream MAP kinase kinases (MKKs) AtMKK4 and AtMKK5 in response to biotic and abiotic stress. In addition, they were identified as key regulators of stomatal development and patterning. AtMPK10 has long been considered as a pseudo-gene, derived from a gene duplication of AtMPK6. Here we show that AtMPK10 is expressed highly but very transiently in seedlings and at sites of local auxin maxima leaves. MPK10 encodes a functional kinase and interacts with the upstream MAP kinase kinase (MAPKK) AtMKK2. mpk10 mutants are delayed in flowering in long-day conditions and in continuous light. Moreover, cotyledons of mpk10 and mkk2 mutants have reduced vein complexity, which can be reversed by inhibiting polar auxin transport (PAT). Auxin does not affect AtMPK10 expression while treatment with the PAT inhibitor HFCA extends the expression in leaves and reverses the mpk10 mutant phenotype. These results suggest that the AtMKK2–AtMPK10 MAPK module regulates venation complexity by altering PAT efficiency.
PMCID: PMC4228985  PMID: 25064848
Arabidopsis MAP kinase; leaf development; polar auxin transport; leaf venation pattern.
4.  Trehalose-6-Phosphate: Connecting Plant Metabolism and Development 
Beyond their metabolic roles, sugars can also act as messengers in signal transduction. Trehalose, a sugar found in many species of plants and animals, is a non-reducing disaccharide composed of two glucose moieties. Its synthesis in plants is a two-step process, involving the production of trehalose-6-phosphate (T6P) catalyzed by trehalose-6-phosphate synthase (TPS) and its consecutive dephosphorylation to trehalose, catalyzed by trehalose-6-phosphate phosphatase (TPP). T6P has recently emerged as an important signaling metabolite, regulating carbon assimilation and sugar status in plants. In addition, T6P has also been demonstrated to play an essential role in plant development. This review recapitulates the recent advances we have made in understanding the role of T6P in coordinating diverse metabolic and developmental processes.
PMCID: PMC3355582  PMID: 22639606
trehalose; trehalose-6-phosphate; TPS; TPP; development
5.  The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana 
BMC Plant Biology  2010;10:285.
Throughout their lives plants produce new organs from groups of pluripotent cells called meristems, located at the tips of the shoot and the root. The size of the shoot meristem is tightly controlled by a feedback loop, which involves the homeodomain transcription factor WUSCHEL (WUS) and the CLAVATA (CLV) proteins. This regulatory circuit is further fine-tuned by morphogenic signals such as hormones and sugars.
Here we show that a family of four plant-specific proteins, encoded by the FANTASTIC FOUR (FAF) genes, has the potential to regulate shoot meristem size in Arabidopsis thaliana. FAF2 and FAF4 are expressed in the centre of the shoot meristem, overlapping with the site of WUS expression. Consistent with a regulatory interaction between the FAF gene family and WUS, our experiments indicate that the FAFs can repress WUS, which ultimately leads to an arrest of meristem activity in FAF overexpressing lines. The finding that meristematic expression of FAF2 and FAF4 is under negative control by CLV3 further supports the hypothesis that the FAFs are modulators of the genetic circuit that regulates the meristem.
This study reports the initial characterization of the Arabidopsis thaliana FAF gene family. Our data indicate that the FAF genes form a plant specific gene family, the members of which have the potential to regulate the size of the shoot meristem by modulating the CLV3-WUS feedback loop.
PMCID: PMC3023791  PMID: 21176196

Results 1-5 (5)