Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum 
Viruses  2016;8(11):314.
The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus–host interactions will provide new targets for crop improvement.
PMCID: PMC5127028  PMID: 27869775
ubiquitin and plant viruses; UPS; Ub-proteasome pathway; RING E3 Ub-Ligase; proteasome degradation; plant immunity; CDC48; NLR receptor; endoplasmic reticulum; Argonaute; silencing suppression
2.  The UPR Branch IRE1-bZIP60 in Plants Plays an Essential Role in Viral Infection and Is Complementary to the Only UPR Pathway in Yeast 
PLoS Genetics  2015;11(4):e1005164.
The unfolded protein response (UPR) signaling network encompasses two pathways in plants, one mediated by inositol-requiring protein-1 (IRE1)-bZIP60 mRNA and the other by site-1/site-2 proteases (S1P/S2P)-bZIP17/bZIP28. As the major sensor of UPR in eukaryotes, IRE1, in response to endoplasmic reticulum (ER) stress, catalyzes the unconventional splicing of HAC1 in yeast, bZIP60 in plants and XBP1 in metazoans. Recent studies suggest that IRE1p and HAC1 mRNA, the only UPR pathway found in yeast, evolves as a cognate system responsible for the robust UPR induction. However, the functional connectivity of IRE1 and its splicing target in multicellular eukaryotes as well as the degree of conservation of IRE1 downstream signaling effectors across eukaryotes remains to be established. Here, we report that IRE1 and its substrate bZIP60 function as a strictly cognate enzyme-substrate pair to control viral pathogenesis in plants. Moreover, we show that the S1P/S2P-bZIP17/bZIP28 pathway, the other known branch of UPR in plants, does not play a detectable role in virus infection, demonstrating the distinct function of the IRE1-bZIP60 pathway in plants. Furthermore, we provide evidence that bZIP60 and HAC1, products of the enzyme-substrate duet, rather than IRE1, are functionally replaceable to cope with ER stress in yeast. Taken together, we conclude that the downstream signaling of the IRE1-mediated splicing is evolutionarily conserved in yeast and plants, and that the IRE1-bZIP60 UPR pathway not only confers overlapping functions with the other UPR branch in fundamental biology but also may exert a unique role in certain biological processes such as virus-plant interactions.
Author Summary
The unfolded protein response (UPR) is crucial to life as it regulates gene expression in response to stress in the endoplasmic reticulum (ER). There are two functionally overlapping UPR branches in plants, e.g., IRE1-bZIP60 and S1P/S2P-bZIP17/bZIP28, but only one, IRE1p-HAC1, in yeast. Despite recent significant progress in understanding UPR, a functional connectivity of IRE1 and its splicing target has not been established in multicellular eukaryotes. It is unknown if a single UPR branch in plants has any unique biological functions. Given that all eukaryotes are equipped with the IRE1-mediated pathway, are IRE1 downstream signaling effectors conserved among kingdoms and at what degree? Here, we show that IRE1 and its substrate bZIP60 function as a matched enzyme-substrate pair to mediate virus-host interactions in plants. We further provide evidence that a single UPR branch, IRE1-bZIP60, rather than S1P/S2P-bZIP17/bZIP28, determines viral pathogenesis, indicating that the two UPR arms may have distinct functions in plants. Finally, we demonstrate that the spliced form bZIP60 and HAC1p, rather than IRE1, are functionally replaceable to cope with abiotic stress in yeast, suggesting that the downstream signaling of the IRE1-mediated splicing is evolutionary conserved in plants and yeast. These data shed new lights into UPR in multicellular eukaryotes.
PMCID: PMC4398384  PMID: 25875739
3.  When supply does not meet demand-ER stress and plant programmed cell death 
The endoplasmic reticulum (ER) is the central organelle in the eukaryotic secretory pathway. The ER functions in protein synthesis and maturation and is crucial for proper maintenance of cellular homeostasis and adaptation to adverse environments. Acting as a cellular sentinel, the ER is exquisitely sensitive to changing environments principally via the ER quality control machinery. When perturbed, ER-stress triggers a tightly regulated and highly conserved, signal transduction pathway known as the unfolded protein response (UPR) that prevents the dangerous accumulation of unfolded/misfolded proteins. In situations where excessive UPR activity surpasses threshold levels, cells deteriorate and eventually trigger programmed cell death (PCD) as a way for the organism to cope with dysfunctional or toxic signals. The programmed cell death that results from excessive ER stress in mammalian systems contributes to several important diseases including hypoxia, neurodegeneration, and diabetes. Importantly, hallmark features and markers of cell death that are associated with ER stress in mammals are also found in plants. In particular, there is a common, conserved set of chaperones that modulate ER cell death signaling. Here we review the elements of plant cell death responses to ER stress and note that an increasing number of plant-pathogen interactions are being identified in which the host ER is targeted by plant pathogens to establish compatibility.
PMCID: PMC4045240  PMID: 24926295
unfolded protein response; ER; autophagy; stress response and stress tolerance; PCD
4.  The ER quality control and ER associated degradation machineries are vital for viral pathogenesis 
The endoplasmic reticulum (ER) is central to protein production and membrane lipid synthesis. The unfolded protein response (UPR) supports cellular metabolism by ensuring protein quality control in the ER. Most positive strand RNA viruses cause extensive remodeling of membranes and require active membrane synthesis to promote infection. How viruses interact with the cellular machinery controlling membrane metabolism is largely unknown. Furthermore, there is mounting data pointing to the importance of the UPR and ER associated degradation (ERAD) machineries in viral pathogenesis in eukaryotes emerging topic. For many viruses, the UPR is an early event that is essential for persistent infection and benefits virus replication. In addition, many viruses are reported to commandeer ER resident chaperones to contribute to virus replication and intercellular movement. In particular, calreticulin, the ubiquitin machinery, and the 26S proteasome are most commonly identified components of the UPR and ERAD machinery that also regulate virus infection. In addition, researchers have noted a link between UPR and autophagy. It is well accepted that positive strand RNA viruses use autophagic membranes as scaffolds to support replication and assembly. However this topic has yet to be explored using plant viruses. The goal of research on this topic is to uncover how viruses interact with this ER-related machinery and to use this information for designing novel strategies to boost immune responses to virus infection.
PMCID: PMC3949406  PMID: 24653727
plant virus interactome; virus–host interactions; virus–membrane interactions; unfolded protein response; ubiquitin proteasome system; chaperones; ERAD
5.  Analysis of protein transport in the Brassica oleracea vasculature reveals protein-specific destinations 
Plant Signaling & Behavior  2012;7(3):361-374.
We investigated the vascular transport properties of exogenously applied proteins to Brassica oleracea plants and compared their delivery to various aerial parts of the plant with carboxy fluorescein (CF) dye. We identified unique properties for each protein. Alexafluor-tagged bovine serum albumin (Alexa-BSA) and Alexafluor-tagged Histone H1 (Alexa-Histone) moved slower than CF dye throughout the plant. Interestingly, Alexa-Histone was retained in the phloem and phloem parenchyma while Alexa-BSA moved into the apoplast. One possibility is that Alexa-Histone sufficiently resembles plant endogenous proteins and is retained in the vascular stream, while Alexa-BSA is exported from the cell as a foreign protein. Both proteins diffuse from the leaf veins into the leaf lamina. Alexa-BSA accumulated in the leaf epidermis while Alexa-Histone accumulated mainly in the mesophyll layers. Fluorescein-tagged hepatitis C virus core protein (fluorescein-HCV) was also delivered to B. oleracea plants and is larger than Alexa-BSA. This protein moves more rapidly than BSA through the plant and was restricted to the leaf veins. Fluorescein-HCV failed to unload to the leaf lamina. These combined data suggest that there is not a single default pathway for the vascular transfer of exogenous proteins in B. oleracea plants. Specific protein properties appear to determine their destination and transport properties within the phloem.
PMCID: PMC3443918  PMID: 22476467
fluorescent proteins; phloem; protein transport; symplastic transport; vascular loading; vascular transport
6.  Magnetic Virus-like Nanoparticles in N. benthamiana Plants: a New Paradigm for Environmental and Agronomic Biotechnological Research 
ACS nano  2011;5(5):4037-4045.
This article demonstrates the encapsulation of cubic iron oxide NPs by Brome mosaic virus capsid shells and the formation, for the first time, of virus-based nanoparticles (VNPs) with cubic cores. Cubic iron oxide nanoparticles (NPs) functionalized with phospholipids containing poly(ethylene glycol) tails and terminal carboxyl groups exhibited exceptional relaxivity in magnetic resonance imaging experiments, which opens the way for in vivo MRI studies of systemic virus movement in plants. Preliminary data on cell-to-cell and long-distance transit behavior of cubic iron oxide NPs and VNPs in N. benthamiana leaves indicate that VNPs have specific transit properties, i.e., penetration into tissue and long-distance transfer through the vasculature in N. Benthamiana plants, even at low temperature (6° C), while NPs devoid of virus protein coats exhibit limited transport by comparison. These particles potentially open new opportunities for the high contrast functional imaging in plants and for the delivery of therapeutic anti-microbial cores into plants.
PMCID: PMC3101318  PMID: 21452886
Virus-based nanoparticles; magnetic nanoparticle; virus transit; plants
7.  Comparative analysis of protein transport in the N. benthamiana vasculature reveals different destinations. 
Plant Signaling & Behavior  2011;6(11):1793-1808.
We investigated the vascular transport of exogenously applied proteins and compared their delivery to various aerial parts of the plant with carboxy fluorescein dye. Alexafluor tagged bovine serum albumin (Alexa-BSA) moves at a low level to upper parts of the plant and unloads to the apoplast. Alexafluor tagged Histone H1 (Alexa-Histone) moves rapidly throughout the plant and is retained in the phloem and phloem parenchyma. Both Alexa-Histone and -BSA were exported from leaf veins class II and III but they unloaded completely into the leaf lamina with barely any residual fluorescence left inside the leaf veins. Fluorescein tagged hepatitis C virus core protein (fluorescein-HCV) moves more rapidly than BSA through the plant and was restricted to the leaf veins. Fluorescein-HCV failed to unload to the leaf lamina. These combined data suggest that there is not a single default pathway for the transfer of exogenous proteins through the plant. Specific protein properties appear to determine their destination and transport properties within the phloem.
PMCID: PMC3329354  PMID: 22057341
fluorescent proteins; Phloem transport; protein trafficking; vascular transport; virus transport
8.  Role of unfolded protein response in plant virus infection 
Plant Signaling & Behavior  2011;6(8):1212-1215.
A new study of Potato virus X (PVX) revealed that a viral movement protein, named TGBp3, triggers the unfolded protein response (UPR) which monitors accumulation of aberrant proteins the endoplasmic reticulum (ER) and targets them for degradation. The PVX TGBp3 resides in ER and activates bZIP60, a transcription factor involved in the UPR pathway. Knockdown of bZIP60 hampers virus infection in protoplasts and whole plants. Preliminary evidence indicates that UPR regulates cellular cytotoxicity that could otherwise lead to cell death if the PVX TGBp3 reaches high levels in the ER. SKP1 expression appears to be linked to bZIP60 and is a component of the SCF-complex mediating proteasomal degradation of cellular substrates. SKP1 expression is induced by PVX TGBp3 and plays a role in regulating PVX spread in whole plants. We propose that SKP1 might be linked to TGBp1-mediated degradation of AGO1.
PMCID: PMC3260726  PMID: 21758013
potato virus X; unfolded protein response; bZIP60; SKP1; viral movement protein; triple gene block proteins; TGB3
9.  Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection 
Cellular chaperones and folding enzymes play central roles in the formation of positive-strand and negative-strand RNA virus infection. This article examines the key cellular chaperones and discusses evidence that these factors are diverted from their cellular functions to play alternative roles in virus infection. For most chaperones discussed, their primary role in the cell is to ensure protein quality control. They are system components that drive substrate protein folding, complex assembly or disaggregation. Their activities often depend upon co-chaperones and ATP hydrolysis. During plant virus infection, Hsp70 and Hsp90 proteins play central roles in the formation of membrane-bound replication complexes for certain members of the tombusvirus, tobamovirus, potyvirus, dianthovirus, potexvirus, and carmovirus genus. There are several co-chaperones, including Yjd1, RME-8, and Hsp40 that associate with the bromovirus replication complex, pomovirus TGB2, and tospovirus Nsm movement proteins. There are also examples of plant viruses that rely on chaperone systems in the endoplasmic reticulum (ER) to support cell-to-cell movement. TMV relies on calreticulin to promote virus intercellular transport. Calreticulin also resides in the plasmodesmata and plays a role in calcium sequestration as well as glycoprotein folding. The pomovirus TGB2 interacts with RME-8 in the endosome. The potexvirus TGB3 protein stimulates expression of ER resident chaperones via the bZIP60 transcription factor. Up-regulating factors involved in protein folding may be essential to handling the load of viral proteins translated along the ER. In addition, TGB3 stimulates SKP1 which is a co-factor in proteasomal degradation of cellular proteins. Such chaperones and co-factors are potential targets for antiviral defense.
PMCID: PMC3515963  PMID: 23230447
RNA virus replicase; cellular chaperones; unfolded protein response; virus intercellular movement; HSP70 heat-shock proteins; HSP90 heat-shock proteins; DNAJ homologs
10.  Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts 
BMC Plant Biology  2010;10:291.
Post transcriptional gene silencing (PTGS) is a mechanism harnessed by plant biologists to knock down gene expression. siRNAs contribute to PTGS that are synthesized from mRNAs or viral RNAs and function to guide cellular endoribonucleases to target mRNAs for degradation. Plant biologists have employed electroporation to deliver artificial siRNAs to plant protoplasts to study gene expression mechanisms at the single cell level. One drawback of electroporation is the extensive loss of viable protoplasts that occurs as a result of the transfection technology.
We employed fluorescent conjugated polymer nanoparticles (CPNs) to deliver siRNAs and knockdown a target gene in plant protoplasts. CPNs are non toxic to protoplasts, having little impact on viability over a 72 h period. Microscopy and flow cytometry reveal that CPNs can penetrate protoplasts within 2 h of delivery. Cellular uptake of CPNs/siRNA complexes were easily monitored using epifluorescence microscopy. We also demonstrate that CPNs can deliver siRNAs targeting specific genes in the cellulose biosynthesis pathway (NtCesA-1a and NtCesA-1b).
While prior work showed that NtCesA-1 is a factor involved in cell wall synthesis in whole plants, we demonstrate that the same gene plays an essential role in cell wall regeneration in isolated protoplasts. Cell wall biosynthesis is central to cell elongation, plant growth and development. The experiments presented here shows that NtCesA is also a factor in cell viability. We show that CPNs are valuable vehicles for delivering siRNAs to plant protoplasts to study vital cellular pathways at the single cell level.
PMCID: PMC3023792  PMID: 21192827
11.  In Vivo Translation of the Triple Gene Block of Potato Virus X Requires Two Subgenomic mRNAs 
Journal of Virology  1998;72(10):8316-8320.
The 25-kilodalton (25K), 12K, and 8K movement proteins of potato virus X are derived from overlapping open reading frames (ORFs). Using an in vivo complementation assay, we have shown that the 25K protein is expressed from a functionally monocistronic mRNA, whereas the 12K and 8K proteins are from a bicistronic mRNA. Translation of the 8K ORF is by leaky ribosome scanning through the 12K ORF.
PMCID: PMC110198  PMID: 9733876

Results 1-11 (11)