PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (55)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Allele diversity for abiotic stress responsive candidate genes in chickpea reference set using gene based SNP markers 
Chickpea is an important food legume crop for the semi-arid regions, however, its productivity is adversely affected by various biotic and abiotic stresses. Identification of candidate genes associated with abiotic stress response will help breeding efforts aiming to enhance its productivity. With this objective, 10 abiotic stress responsive candidate genes were selected on the basis of prior knowledge of this complex trait. These 10 genes were subjected to allele specific sequencing across a chickpea reference set comprising 300 genotypes including 211 genotypes of chickpea mini core collection. A total of 1.3 Mbp sequence data were generated. Multiple sequence alignment (MSA) revealed 79 SNPs and 41 indels in nine genes while the CAP2 gene was found to be conserved across all the genotypes. Among 10 candidate genes, the maximum number of SNPs (34) was observed in abscisic acid stress and ripening (ASR) gene including 22 transitions, 11 transversions and one tri-allelic SNP. Nucleotide diversity varied from 0.0004 to 0.0029 while polymorphism information content (PIC) values ranged from 0.01 (AKIN gene) to 0.43 (CAP2 promoter). Haplotype analysis revealed that alleles were represented by more than two haplotype blocks, except alleles of the CAP2 and sucrose synthase (SuSy) gene, where only one haplotype was identified. These genes can be used for association analysis and if validated, may be useful for enhancing abiotic stress, including drought tolerance, through molecular breeding.
doi:10.3389/fpls.2014.00248
PMCID: PMC4046317  PMID: 24926299
chickpea; abiotic stress; single nucleotide polymorphism; genetic diversity; candidate genes
2.  Comparative sequence analysis of nitrogen fixation-related genes in six legumes 
Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF) by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved. To understand the relationship of divergence and evolutionary processes in legumes, this study analyzes orthologs and paralogs for selected 20 NF-related genes by using comparative genomic approaches in six legumes i.e., Medicago truncatula (Mt), Cicer arietinum, Lotus japonicus, Cajanus cajan (Cc), Phaseolus vulgaris (Pv), and Glycine max (Gm). Subsequently, sequence distances, numbers of synonymous substitutions per synonymous site (Ks) and non-synonymous substitutions per non-synonymous site (Ka) between orthologs and paralogs were calculated and compared across legumes. These analyses suggest the closest relationship between Gm and Cc and the highest distance between Mt and Pv in six legumes. Ks proportional plots clearly showed ancient genome duplication in all legumes, whole genome duplication event in Gm and also speciation pattern in different legumes. This study also reports some interesting observations e.g., no peak at Ks 0.4 in Gm-Gm, location of two independent genes next to each other in Mt and low Ks values for outparalogs for three genes as compared to other 12 genes. In summary, this study underlines the importance of NF-related genes and provides important insights in genome organization and evolutionary aspects of six legume species analyzed.
doi:10.3389/fpls.2013.00300
PMCID: PMC3749373  PMID: 23986765
nitrogen fixation; legume; comparative analysis; Ks; evolution
3.  Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.) 
BMC Genetics  2014;15(1):133.
Background
Peanut is one of the major source for human consumption worldwide and its seed contain approximately 50% oil. Improvement of oil content and quality traits (high oleic and low linoleic acid) in peanut could be accelerated by exploiting linked markers through molecular breeding. The objective of this study was to identify QTLs associated with oil content, and estimate relative contribution of FAD2 genes (ahFAD2A and ahFAD2B) to oil quality traits in two recombinant inbred line (RIL) populations.
Results
Improved genetic linkage maps were developed for S-population (SunOleic 97R × NC94022) with 206 (1780.6 cM) and T-population (Tifrunner × GT-C20) with 378 (2487.4 cM) marker loci. A total of 6 and 9 QTLs controlling oil content were identified in the S- and T-population, respectively. The contribution of each QTL towards oil content variation ranged from 3.07 to 10.23% in the S-population and from 3.93 to 14.07% in the T-population. The mapping positions for ahFAD2A (A sub-genome) and ahFAD2B (B sub-genome) genes were assigned on a09 and b09 linkage groups. The ahFAD2B gene (26.54%, 25.59% and 41.02% PVE) had higher phenotypic effect on oleic acid (C18:1), linoleic acid (C18:2), and oleic/linoleic acid ratio (O/L ratio) than ahFAD2A gene (8.08%, 6.86% and 3.78% PVE). The FAD2 genes had no effect on oil content. This study identified a total of 78 main-effect QTLs (M-QTLs) with up to 42.33% phenotypic variation (PVE) and 10 epistatic QTLs (E-QTLs) up to 3.31% PVE for oil content and quality traits.
Conclusions
A total of 78 main-effect QTLs (M-QTLs) and 10 E-QTLs have been detected for oil content and oil quality traits. One major QTL (more than 10% PVE) was identified in both the populations for oil content with source alleles from NC94022 and GT-C20 parental genotypes. FAD2 genes showed high effect for oleic acid (C18:1), linoleic acid (C18:2), and O/L ratio while no effect on total oil content. The information on phenotypic effect of FAD2 genes for oleic acid, linoleic acid and O/L ratio, and oil content will be applied in breeding selection.
Electronic supplementary material
The online version of this article (doi:10.1186/s12863-014-0133-4) contains supplementary material, which is available to authorized users.
doi:10.1186/s12863-014-0133-4
PMCID: PMC4278341  PMID: 25491595
Peanut; Genetic map; QTL analysis; Oil content; Oleic acid; Linoleic acid; O/L ratio; FAD2 genes
4.  Genome sequence of mungbean and insights into evolution within Vigna species 
Nature Communications  2014;5:5443.
Mungbean (Vigna radiata) is a fast-growing, warm-season legume crop that is primarily cultivated in developing countries of Asia. Here we construct a draft genome sequence of mungbean to facilitate genome research into the subgenus Ceratotropis, which includes several important dietary legumes in Asia, and to enable a better understanding of the evolution of leguminous species. Based on the de novo assembly of additional wild mungbean species, the divergence of what was eventually domesticated and the sampled wild mungbean species appears to have predated domestication. Moreover, the de novo assembly of a tetraploid Vigna species (V. reflexo-pilosa var. glabra) provides genomic evidence of a recent allopolyploid event. The species tree is constructed using de novo RNA-seq assemblies of 22 accessions of 18 Vigna species and protein sets of Glycine max. The present assembly of V. radiata var. radiata will facilitate genome research and accelerate molecular breeding of the subgenus Ceratotropis.
Mungbean is a fast-growing and warm-season legume crop, cultivated mainly in Asia. Here, the authors sequence the genomes of both wild and domesticated mungbean varieties and, together with detailed transcriptome data, provide insight into mungbean domestication, polyploidization and speciation.
doi:10.1038/ncomms6443
PMCID: PMC4241982  PMID: 25384727
5.  Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.) 
Key message
We report a likely candidate gene,CcTFL1,for determinacy in pigeonpea through candidate gene sequencing analysis, mapping, QTL analysis together with comparative genomics and expression profiling.
Abstract
Pigeonpea (Cajanus cajan) is the sixth most important legume crop grown on ~5 million hectares globally. Determinacy is an agronomically important trait selected during pigeonpea domestication. In the present study, seven genes related to determinacy/flowering pattern in pigeonpea were isolated through a comparative genomics approach. Single nucleotide polymorphism (SNP) analysis of these candidate genes on 142 pigeonpea lines found a strong association of SNPs with the determinacy trait for three of the genes. Subsequently, QTL analysis highlighted one gene, CcTFL1, as a likely candidate for determinacy in pigeonpea since it explained 45–96 % of phenotypic variation for determinacy, 45 % for flowering time and 77 % for plant height. Comparative genomics analysis of CcTFL1 with the soybean (Glycine max) and common bean (Phaseolus vulgaris) genomes at the micro-syntenic level further enhanced our confidence in CcTFL1 as a likely candidate gene. These findings have been validated by expression analysis that showed down regulation of CcTFL1 in a determinate line in comparison to an indeterminate line. Gene-based markers developed in the present study will allow faster manipulation of the determinacy trait in future breeding programs of pigeonpea and will also help in the development of markers for these traits in other related legume species.
Electronic supplementary material
The online version of this article (doi:10.1007/s00122-014-2406-8) contains supplementary material, which is available to authorized users.
doi:10.1007/s00122-014-2406-8
PMCID: PMC4236620  PMID: 25331300
6.  Genomewide Association Studies for 50 Agronomic Traits in Peanut Using the ‘Reference Set’ Comprising 300 Genotypes from 48 Countries of the Semi-Arid Tropics of the World 
PLoS ONE  2014;9(8):e105228.
Peanut is an important and nutritious agricultural commodity and a livelihood of many small-holder farmers in the semi-arid tropics (SAT) of world which are facing serious production threats. Integration of genomics tools with on-going genetic improvement approaches is expected to facilitate accelerated development of improved cultivars. Therefore, high-resolution genotyping and multiple season phenotyping data for 50 important agronomic, disease and quality traits were generated on the ‘reference set’ of peanut. This study reports comprehensive analyses of allelic diversity, population structure, linkage disequilibrium (LD) decay and marker-trait association (MTA) in peanut. Distinctness of all the genotypes can be established by using either an unique allele detected by a single SSR or a combination of unique alleles by two or more than two SSR markers. As expected, DArT features (2.0 alleles/locus, 0.125 PIC) showed lower allele frequency and polymorphic information content (PIC) than SSRs (22.21 alleles /locus, 0.715 PIC). Both marker types clearly differentiated the genotypes of diploids from tetraploids. Multi-allelic SSRs identified three sub-groups (K = 3) while the LD simulation trend line based on squared-allele frequency correlations (r2) predicted LD decay of 15–20 cM in peanut genome. Detailed analysis identified a total of 524 highly significant MTAs (pvalue >2.1×10–6) with wide phenotypic variance (PV) range (5.81–90.09%) for 36 traits. These MTAs after validation may be deployed in improving biotic resistance, oil/ seed/ nutritional quality, drought tolerance related traits, and yield/ yield components.
doi:10.1371/journal.pone.0105228
PMCID: PMC4139351  PMID: 25140620
7.  Exploring Germplasm Diversity to Understand the Domestication Process in Cicer spp. Using SNP and DArT Markers 
PLoS ONE  2014;9(7):e102016.
To estimate genetic diversity within and between 10 interfertile Cicer species (94 genotypes) from the primary, secondary and tertiary gene pool, we analysed 5,257 DArT markers and 651 KASPar SNP markers. Based on successful allele calling in the tertiary gene pool, 2,763 DArT and 624 SNP markers that are polymorphic between genotypes from the gene pools were analyzed further. STRUCTURE analyses were consistent with 3 cultivated populations, representing kabuli, desi and pea-shaped seed types, with substantial admixture among these groups, while two wild populations were observed using DArT markers. AMOVA was used to partition variance among hierarchical sets of landraces and wild species at both the geographical and species level, with 61% of the variation found between species, and 39% within species. Molecular variance among the wild species was high (39%) compared to the variation present in cultivated material (10%). Observed heterozygosity was higher in wild species than the cultivated species for each linkage group. Our results support the Fertile Crescent both as the center of domestication and diversification of chickpea. The collection used in the present study covers all the three regions of historical chickpea cultivation, with the highest diversity in the Fertile Crescent region. Shared alleles between different gene pools suggest the possibility of gene flow among these species or incomplete lineage sorting and could indicate complicated patterns of divergence and fusion of wild chickpea taxa in the past.
doi:10.1371/journal.pone.0102016
PMCID: PMC4092095  PMID: 25010059
8.  An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data 
PLoS ONE  2014;9(7):e101754.
Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software.
doi:10.1371/journal.pone.0101754
PMCID: PMC4086967  PMID: 25003610
9.  CicArMiSatDB: the chickpea microsatellite database 
BMC Bioinformatics  2014;15:212.
Background
Chickpea (Cicer arietinum) is a widely grown legume crop in tropical, sub-tropical and temperate regions. Molecular breeding approaches seem to be essential for enhancing crop productivity in chickpea. Until recently, limited numbers of molecular markers were available in the case of chickpea for use in molecular breeding. However, the recent advances in genomics facilitated the development of large scale markers especially SSRs (simple sequence repeats), the markers of choice in any breeding program. Availability of genome sequence very recently opens new avenues for accelerating molecular breeding approaches for chickpea improvement.
Description
In order to assist genetic studies and breeding applications, we have developed a user friendly relational database named the Chickpea Microsatellite Database (CicArMiSatDB http://cicarmisatdb.icrisat.org). This database provides detailed information on SSRs along with their features in the genome. SSRs have been classified and made accessible through an easy-to-use web interface.
Conclusions
This database is expected to help chickpea community in particular and legume community in general, to select SSRs of particular type or from a specific region in the genome to advance both basic genomics research as well as applied aspects of crop improvement.
doi:10.1186/1471-2105-15-212
PMCID: PMC4230034  PMID: 24952649
Plant genomics; Database; Chickpea; cicer; Microsatellite; SSR
10.  Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.) 
Key message
Successful introgression of a major QTL for rust resistance, through marker-assisted backcrossing, in three popular Indian peanut cultivars generated several promising introgression lines with enhanced rust resistance and higher yield.
Abstract
Leaf rust, caused by Puccinia arachidis Speg, is one of the major devastating diseases in peanut (Arachis hypogaea L.). One QTL region on linkage group AhXV explaining upto 82.62 % phenotypic variation for rust resistance was validated and introgressed from cultivar ‘GPBD 4’ into three rust susceptible varieties (‘ICGV 91114’, ‘JL 24’ and ‘TAG 24’) through marker-assisted backcrossing (MABC). The MABC approach employed a total of four markers including one dominant (IPAHM103) and three co-dominant (GM2079, GM1536, GM2301) markers present in the QTL region. After 2–3 backcrosses and selfing, 200 introgression lines (ILs) were developed from all the three crosses. Field evaluation identified 81 ILs with improved rust resistance. Those ILs had significantly increased pod yields (56–96 %) in infested environments compared to the susceptible parents. Screening of selected 43 promising ILs with 13 markers present on linkage group AhXV showed introgression of the target QTL region from the resistant parent in 11 ILs. Multi-location field evaluation of these ILs should lead to the release of improved varieties. The linked markers may be used in improving rust resistance in peanut breeding programmes.
Electronic supplementary material
The online version of this article (doi:10.1007/s00122-014-2338-3) contains supplementary material, which is available to authorized users.
doi:10.1007/s00122-014-2338-3
PMCID: PMC4110420  PMID: 24927821
11.  Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding 
PLoS Biology  2014;12(6):e1001883.
Rajeev Varshney, Ryohei Terauchi, and Susan McCouch summarize the current and future uses of next-generation sequencing technologies, both for developing crops with improved traits and for increasing the efficiency of modern plant breeding, as a step towards meeting the challenge of feeding a growing world population.
Next generation sequencing (NGS) technologies are being used to generate whole genome sequences for a wide range of crop species. When combined with precise phenotyping methods, these technologies provide a powerful and rapid tool for identifying the genetic basis of agriculturally important traits and for predicting the breeding value of individuals in a plant breeding population. Here we summarize current trends and future prospects for utilizing NGS-based technologies to develop crops with improved trait performance and increase the efficiency of modern plant breeding. It is our hope that the application of NGS technologies to plant breeding will help us to meet the challenge of feeding a growing world population.
doi:10.1371/journal.pbio.1001883
PMCID: PMC4051599  PMID: 24914810
12.  Development of DArT markers and assessment of diversity in Fusarium oxysporum f. sp. ciceris, wilt pathogen of chickpea (Cicer arietinum L.) 
BMC Genomics  2014;15(1):454.
Background
Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt of chickpea is highly variable and frequent recurrence of virulent forms have affected chickpea production and exhausted valuable genetic resources. The severity and yield losses of Fusarium wilt differ from place to place owing to existence of physiological races among isolates. Diversity study of fungal population associated with a disease plays a major role in understanding and devising better disease control strategies. The advantages of using molecular markers to understand the distribution of genetic diversity in Foc populations is well understood. The recent development of Diversity Arrays Technology (DArT) offers new possibilities to study the diversity in pathogen population. In this study, we developed DArT markers for Foc population, analysed the genetic diversity existing within and among Foc isolates, compared the genotypic and phenotypic diversity and infer the race scenario of Foc in India.
Results
We report the successful development of DArT markers for Foc and their utility in genotyping of Foc collections representing five chickpea growing agro-ecological zones of India. The DArT arrays revealed a total 1,813 polymorphic markers with an average genotyping call rate of 91.16% and a scoring reproducibility of 100%. Cluster analysis, principal coordinate analysis and population structure indicated that the different isolates of Foc were partially classified based on geographical source. Diversity in Foc population was compared with the phenotypic variability and it was found that DArT markers were able to group the isolates consistent with its virulence group. A number of race-specific unique and rare alleles were also detected.
Conclusion
The present study generated significant information in terms of pathogenic and genetic diversity of Foc which could be used further for development and deployment of region-specific resistant cultivars of chickpea. The DArT markers were proved to be a powerful diagnostic tool to study the genotypic diversity in Foc. The high number of DArT markers allowed a greater resolution of genetic differences among isolates and enabled us to examine the extent of diversity in the Foc population present in India, as well as provided support to know the changing race scenario in Foc population.
Electronic supplementary material
The online version of this article (doi: 10.1186/1471-2164-15-454) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-454
PMCID: PMC4070567  PMID: 24912854
Chickpea; DArT; Fusarium wilt; Molecular markers; Races; Virulence
13.  Structural variations in plant genomes 
Briefings in Functional Genomics  2014;13(4):296-307.
Differences between plant genomes range from single nucleotide polymorphisms to large-scale duplications, deletions and rearrangements. The large polymorphisms are termed structural variants (SVs). SVs have received significant attention in human genetics and were found to be responsible for various chronic diseases. However, little effort has been directed towards understanding the role of SVs in plants. Many recent advances in plant genetics have resulted from improvements in high-resolution technologies for measuring SVs, including microarray-based techniques, and more recently, high-throughput DNA sequencing. In this review we describe recent reports of SV in plants and describe the genomic technologies currently used to measure these SVs.
doi:10.1093/bfgp/elu016
PMCID: PMC4110416  PMID: 24907366
structural variations (SVs); next-generation sequencing (NGS); copy number variations (CNVs); presence and absence variations (PAVs); inversions; translocations
14.  Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut 
Plant Molecular Biology  2014;85(4-5):395-409.
The peanut is a special plant for its aerial flowering but subterranean fructification. The failure of peg penetration into the soil leads to form aerial pod and finally seed abortion. However, the mechanism of seed abortion during aerial pod development remains obscure. Here, a comparative transcriptome analysis between aerial and subterranean pods at different developmental stages was produced using a customized NimbleGen microarray representing 36,158 unigenes. By comparing 4 consecutive time-points, totally 6,203 differentially expressed genes, 4,732 stage-specific expressed genes and 2,401 specific expressed genes only in aerial or subterranean pods were identified in this study. Functional annotation showed their mainly involvement in biosynthesis, metabolism, transcription regulation, transporting, stress response, photosynthesis, signal transduction, cell division, apoptosis, embryonic development, hormone response and light signaling, etc. Emphasis was focused on hormone response, cell apoptosis, embryonic development and light signaling relative genes. These genes might function as potential candidates to provide insights into seed abortion during aerial pod development. Ten candidate genes were validated by Real-time RT-PCR. Additionally, consistent with up-regulation of auxin response relative genes in aerial pods, endogenous IAA content was also significantly increased by HPLC analysis. This study will further provide new molecular insight that auxin and auxin response genes potentially contribute to peanut seed and pod development.
Electronic supplementary material
The online version of this article (doi:10.1007/s11103-014-0193-x) contains supplementary material, which is available to authorized users.
doi:10.1007/s11103-014-0193-x
PMCID: PMC4152868  PMID: 24793121
Aerial pod; Subterranean pod; Transcriptome; Peanut; Seed abortion; Development
15.  Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects 
Key message
Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops.
Abstract
The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.
doi:10.1007/s00122-014-2301-3
PMCID: PMC4035543  PMID: 24710822
16.  Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.) 
Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement.
Electronic supplementary material
The online version of this article (doi:10.1007/s10142-014-0363-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s10142-014-0363-6
PMCID: PMC4273598  PMID: 24610029
Chickpea; Physical map; Genetic maps; Reference genome sequence
17.  Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis 
Genome Biology  2014;15(2):R39.
Background
Sesame, Sesamum indicum L., is considered the queen of oilseeds for its high oil content and quality, and is grown widely in tropical and subtropical areas as an important source of oil and protein. However, the molecular biology of sesame is largely unexplored.
Results
Here, we report a high-quality genome sequence of sesame assembled de novo with a contig N50 of 52.2 kb and a scaffold N50 of 2.1 Mb, containing an estimated 27,148 genes. The results reveal novel, independent whole genome duplication and the absence of the Toll/interleukin-1 receptor domain in resistance genes. Candidate genes and oil biosynthetic pathways contributing to high oil content were discovered by comparative genomic and transcriptomic analyses. These revealed the expansion of type 1 lipid transfer genes by tandem duplication, the contraction of lipid degradation genes, and the differential expression of essential genes in the triacylglycerol biosynthesis pathway, particularly in the early stage of seed development. Resequencing data in 29 sesame accessions from 12 countries suggested that the high genetic diversity of lipid-related genes might be associated with the wide variation in oil content. Additionally, the results shed light on the pivotal stage of seed development, oil accumulation and potential key genes for sesamin production, an important pharmacological constituent of sesame.
Conclusions
As an important species from the order Lamiales and a high oil crop, the sesame genome will facilitate future research on the evolution of eudicots, as well as the study of lipid biosynthesis and potential genetic improvement of sesame.
doi:10.1186/gb-2014-15-2-r39
PMCID: PMC4053841  PMID: 24576357
18.  Genetic Diversity and Demographic History of Cajanus spp. Illustrated from Genome-Wide SNPs 
PLoS ONE  2014;9(2):e88568.
Understanding genetic structure of Cajanus spp. is essential for achieving genetic improvement by quantitative trait loci (QTL) mapping or association studies and use of selected markers through genomic assisted breeding and genomic selection. After developing a comprehensive set of 1,616 single nucleotide polymorphism (SNPs) and their conversion into cost effective KASPar assays for pigeonpea (Cajanus cajan), we studied levels of genetic variability both within and between diverse set of Cajanus lines including 56 breeding lines, 21 landraces and 107 accessions from 18 wild species. These results revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, 75.8% of successful SNP assays revealed polymorphism, and more than 95% of these assays could be successfully transferred to related wild species. To show regional patterns of variation, we used STRUCTURE and Analysis of Molecular Variance (AMOVA) to partition variance among hierarchical sets of landraces and wild species at either the continental scale or within India. STRUCTURE separated most of the domesticated germplasm from wild ecotypes, and separates Australian and Asian wild species as has been found previously. Among Indian regions and states within regions, we found 36% of the variation between regions, and 64% within landraces or wilds within states. The highest level of polymorphism in wild relatives and landraces was found in Madhya Pradesh and Andhra Pradesh provinces of India representing the centre of origin and domestication of pigeonpea respectively.
doi:10.1371/journal.pone.0088568
PMCID: PMC3922937  PMID: 24533111
19.  Comprehensive Transcriptome Assembly of Chickpea (Cicer arietinum L.) Using Sanger and Next Generation Sequencing Platforms: Development and Applications 
PLoS ONE  2014;9(1):e86039.
A comprehensive transcriptome assembly of chickpea has been developed using 134.95 million Illumina single-end reads, 7.12 million single-end FLX/454 reads and 139,214 Sanger expressed sequence tags (ESTs) from >17 genotypes. This hybrid transcriptome assembly, referred to as Cicer arietinum Transcriptome Assembly version 2 (CaTA v2, available at http://data.comparative-legumes.org/transcriptomes/cicar/lista_cicar-201201), comprising 46,369 transcript assembly contigs (TACs) has an N50 length of 1,726 bp and a maximum contig size of 15,644 bp. Putative functions were determined for 32,869 (70.8%) of the TACs and gene ontology assignments were determined for 21,471 (46.3%). The new transcriptome assembly was compared with the previously available chickpea transcriptome assemblies as well as to the chickpea genome. Comparative analysis of CaTA v2 against transcriptomes of three legumes - Medicago, soybean and common bean, resulted in 27,771 TACs common to all three legumes indicating strong conservation of genes across legumes. CaTA v2 was also used for identification of simple sequence repeats (SSRs) and intron spanning regions (ISRs) for developing molecular markers. ISRs were identified by aligning TACs to the Medicago genome, and their putative mapping positions at chromosomal level were identified using transcript map of chickpea. Primer pairs were designed for 4,990 ISRs, each representing a single contig for which predicted positions are inferred and distributed across eight linkage groups. A subset of randomly selected ISRs representing all eight chickpea linkage groups were validated on five chickpea genotypes and showed 20% polymorphism with average polymorphic information content (PIC) of 0.27. In summary, the hybrid transcriptome assembly developed and novel markers identified can be used for a variety of applications such as gene discovery, marker-trait association, diversity analysis etc., to advance genetics research and breeding applications in chickpea and other related legumes.
doi:10.1371/journal.pone.0086039
PMCID: PMC3900451  PMID: 24465857
20.  Genome-based analysis of the transcriptome from mature chickpea root nodules 
Symbiotic nitrogen fixation (SNF) in root nodules of grain legumes such as chickpea is a highly complex process that drastically affects the gene expression patterns of both the prokaryotic as well as eukaryotic interacting cells. A successfully established symbiotic relationship requires mutual signaling mechanisms and a continuous adaptation of the metabolism of the involved cells to varying environmental conditions. Although some of these processes are well understood today many of the molecular mechanisms underlying SNF, especially in chickpea, remain unclear. Here, we reannotated our previously published transcriptome data generated by deepSuperSAGE (Serial Analysis of Gene Expression) to the recently published draft genome of chickpea to assess the root- and nodule-specific transcriptomes of the eukaryotic host cells. The identified gene expression patterns comprise up to 71 significantly differentially expressed genes and the expression of twenty of these was validated by quantitative real-time PCR with the tissues from five independent biological replicates. Many of the differentially expressed transcripts were found to encode proteins implicated in sugar metabolism, antioxidant defense as well as biotic and abiotic stress responses of the host cells, and some of them were already known to contribute to SNF in other legumes. The differentially expressed genes identified in this study represent candidates that can be used for further characterization of the complex molecular mechanisms underlying SNF in chickpea.
doi:10.3389/fpls.2014.00325
PMCID: PMC4093793  PMID: 25071808
Cicer arietinum; symbiotic nitrogen fixation; root nodules; chickpea genome sequence; deepSuperSAGE; gene expression profiling
21.  Molecular genetics and genomics of abiotic stress responses 
doi:10.3389/fpls.2014.00398
PMCID: PMC4140073  PMID: 25191329
abiotic stress; molecular genetics; genomics; functional genomics; regulatory networks; genetic diversity
22.  Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.) 
Key message
Analysis of phenotypic data for 20 drought tolerance traits in 1–7 seasons at 1–5 locations together with genetic mapping data for two mapping populations provided 9 QTL clusters of which one present on CaLG04 has a high potential to enhance drought tolerance in chickpea improvement.
Abstract
Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in the arid and semi-arid regions of the world. Drought is one of the major constraints leading up to 50 % production losses in chickpea. In order to dissect the complex nature of drought tolerance and to use genomics tools for enhancing yield of chickpea under drought conditions, two mapping populations—ICCRIL03 (ICC 4958 × ICC 1882) and ICCRIL04 (ICC 283 × ICC 8261) segregating for drought tolerance-related root traits were phenotyped for a total of 20 drought component traits in 1–7 seasons at 1–5 locations in India. Individual genetic maps comprising 241 loci and 168 loci for ICCRIL03 and ICCRIL04, respectively, and a consensus genetic map comprising 352 loci were constructed (http://cmap.icrisat.ac.in/cmap/sm/cp/varshney/). Analysis of extensive genotypic and precise phenotypic data revealed 45 robust main-effect QTLs (M-QTLs) explaining up to 58.20 % phenotypic variation and 973 epistatic QTLs (E-QTLs) explaining up to 92.19 % phenotypic variation for several target traits. Nine QTL clusters containing QTLs for several drought tolerance traits have been identified that can be targeted for molecular breeding. Among these clusters, one cluster harboring 48 % robust M-QTLs for 12 traits and explaining about 58.20 % phenotypic variation present on CaLG04 has been referred as “QTL-hotspot”. This genomic region contains seven SSR markers (ICCM0249, NCPGR127, TAA170, NCPGR21, TR11, GA24 and STMS11). Introgression of this region into elite cultivars is expected to enhance drought tolerance in chickpea.
Electronic supplementary material
The online version of this article (doi:10.1007/s00122-013-2230-6) contains supplementary material, which is available to authorized users.
doi:10.1007/s00122-013-2230-6
PMCID: PMC3910274  PMID: 24326458
23.  Cytoplasmic Male Sterility-Associated Chimeric Open Reading Frames Identified by Mitochondrial Genome Sequencing of Four Cajanus Genotypes 
The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea.
doi:10.1093/dnares/dst025
PMCID: PMC3789559  PMID: 23792890
mitochondria; pigeonpea; next-generation sequencing; cytoplasmic male sterility; open reading frames
24.  Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs 
BMC Genomics  2013;14:159.
Background
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a widely cultivated drought- and high-temperature tolerant C4 cereal grown under dryland, rainfed and irrigated conditions in drought-prone regions of the tropics and sub-tropics of Africa, South Asia and the Americas. It is considered an orphan crop with relatively few genomic and genetic resources. This study was undertaken to increase the EST-based microsatellite marker and genetic resources for this crop to facilitate marker-assisted breeding.
Results
Newly developed EST-SSR markers (99), along with previously mapped EST-SSR (17), genomic SSR (53) and STS (2) markers, were used to construct linkage maps of four F7 recombinant inbred populations (RIP) based on crosses ICMB 841-P3 × 863B-P2 (RIP A), H 77/833-2 × PRLT 2/89-33 (RIP B), 81B-P6 × ICMP 451-P8 (RIP C) and PT 732B-P2 × P1449-2-P1 (RIP D). Mapped loci numbers were greatest for RIP A (104), followed by RIP B (78), RIP C (64) and RIP D (59). Total map lengths (Haldane) were 615 cM, 690 cM, 428 cM and 276 cM, respectively. A total of 176 loci detected by 171 primer pairs were mapped among the four crosses. A consensus map of 174 loci (899 cM) detected by 169 primer pairs was constructed using MergeMap to integrate the individual linkage maps. Locus order in the consensus map was well conserved for nearly all linkage groups. Eighty-nine EST-SSR marker loci from this consensus map had significant BLAST hits (top hits with e-value ≤ 1E-10) on the genome sequences of rice, foxtail millet, sorghum, maize and Brachypodium with 35, 88, 58, 48 and 38 loci, respectively.
Conclusion
The consensus map developed in the present study contains the largest set of mapped SSRs reported to date for pearl millet, and represents a major consolidation of existing pearl millet genetic mapping information. This study increased numbers of mapped pearl millet SSR markers by >50%, filling important gaps in previously published SSR-based linkage maps for this species and will greatly facilitate SSR-based QTL mapping and applied marker-assisted selection programs.
doi:10.1186/1471-2164-14-159
PMCID: PMC3606598  PMID: 23497368
EST-SSR markers; EST; Linkage map; Consensus map; Drought stress; Pearl millet; Synteny
25.  Single Nucleotide Polymorphisms in HSP17.8 and Their Association with Agronomic Traits in Barley 
PLoS ONE  2013;8(2):e56816.
Small heat shock protein 17.8 (HSP17.8) is produced abundantly in plant cells under heat and other stress conditions and may play an important role in plant tolerance to stress environments. However, HSP17.8 may be differentially expressed in different accessions of a crop species exposed to identical stress conditions. The ability of different genotypes to adapt to various stress conditions resides in their genetic diversity. Allelic variations are the most common forms of genetic variation in natural populations. In this study, single nucleotide polymorphisms (SNPs) of the HSP17.8 gene were investigated across 210 barley accessions collected from 30 countries using EcoTILLING technology. Eleven SNPs including 10 from the coding region of HSP17.8 were detected, which form nine distinguishable haplotypes in the barley collection. Among the 10 SNPs in the coding region, six are missense mutations and four are synonymous nucleotide changes. Five of the six missense changes are predicted to be deleterious to HSP17.8 function. The accessions from Middle East Asia showed the higher nucleotide diversity of HSP17.8 than those from other regions and wild barley (H. spontaneum) accessions exhibited greater diversity than the cultivated barley (H. vulgare) accessions. Four SNPs in HSP17.8 were found associated with at least one of the agronomic traits evaluated except for spike length, namely number of grains per spike, thousand kernel weight, plant height, flag leaf area and leaf color. The association between SNP and these agronomic traits may provide new insight for study of the gene's potential contribution to drought tolerance of barley.
doi:10.1371/journal.pone.0056816
PMCID: PMC3572059  PMID: 23418603

Results 1-25 (55)