PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
author:("steppan, ante")
1.  The two α-dox genes of Nicotiana attenuata: overlapping but distinct functions in development and stress responses 
BMC Plant Biology  2010;10:171.
Background
Plant fatty acid α-dioxygenases (α-DOX) are oxylipin-forming enzymes induced by biotic and abiotic stresses, which also participate in developmental processes. In Nicotiana attenuata, herbivory strongly induces the expression of an α-dox1 gene. To determine its role, we silenced its expression using Agrobacterium-mediated plant transformation with an inverted repeat construct. More than half of the transformed lines showed a severe dwarf growth phenotype that was very similar to the phenotype of tomato plants mutated at a second α-dox isoform. This led us to identify the corresponding α-dox2 gene in N. attenuata and examine the regulation of both α-dox genes as well as the consequences of their silencing in plant development and anti-herbivore defense.
Results
The transformed lines exhibiting a dwarf growth phenotype are co-silenced for both α-dox genes resulting in a nearly complete suppression of α-DOX activity, which is associated with increases in ABA, JA and anthocyanin levels, all metabolic signatures of oxidative stress. The other lines, only silenced for α-dox1, developed similarly to wild-type plants, exhibited a 40% reduction of α-DOX activity resulting in a 50% reduction of its main product in planta (2-HOT) and showed no signs of oxidative stress. In contrast to α-dox1, the expression of α-dox2 gene is not induced by wounding or elicitors in the oral secretions of Manduca sexta. Instead, α-dox2 is expressed in roots and flowers which lack α-dox1 expression, but both genes are equally regulated during leaf maturation. We transiently silenced α-dox gene copies with gene-specific constructs using virus induced gene silencing and determined the consequences for plant development and phytohormone and 2-HOT levels. While individual silencing of α-dox1 or α-dox2 had no effects on plant growth, the co-suppression of both α-dox genes decreased plant growth. Plants transiently silenced for both α-dox genes had increased constitutive levels of JA and ABA but silencing α-dox1 alone resulted in lower M. sexta-induced levels of JA, 2-HOT and ABA.
Conclusions
Thus, both α-dox isoforms function in the development of N. attenuata. In leaf maturation, the two α-dox genes have overlapping functions, but only α-dox2 is involved in root and flower development and only α-dox1 functions in anti-herbivore defense.
doi:10.1186/1471-2229-10-171
PMCID: PMC3017789  PMID: 20701756
2.  Nicotine's Defensive Function in Nature 
PLoS Biology  2004;2(8):e217.
Plants produce metabolites that directly decrease herbivore performance, and as a consequence, herbivores are selected for resistance to these metabolites. To determine whether these metabolites actually function as defenses requires measuring the performance of plants that are altered only in the production of a certain metabolite. To date, the defensive value of most plant resistance traits has not been demonstrated in nature. We transformed native tobacco(Nicotiana attenuata) with a consensus fragment of its two putrescine N-methyl transferase (pmt) genes in either antisense or inverted-repeat (IRpmt) orientations. Only the latter reduced (by greater than 95%) constitutive and inducible nicotine. With D4-nicotinic acid (NA), we demonstrate that silencing pmt inhibits nicotine production, while the excess NA dimerizes to form anatabine. Larvae of the nicotine-adapted herbivore Manduca sexta (tobacco hornworm) grew faster and, like the beetle Diabrotica undecimpunctata, preferred IRpmt plants in choice tests. When planted in their native habitat, IRpmt plants were attacked more frequently and, compared to wild-type plants, lost 3-fold more leaf area from a variety of native herbivores, of which the beet armyworm, Spodoptera exigua, and Trimerotropis spp. grasshoppers caused the most damage. These results provide strong evidence that nicotine functions as an efficient defense in nature and highlights the value of transgenic techniques for ecological research.
Transgenic plants confirm the role that nicotine has in protecting tobacco plants from predators in nature and demonstrates the power of transgenic tools in studying ecological interactions in the field
doi:10.1371/journal.pbio.0020217
PMCID: PMC509292  PMID: 15314646

Results 1-2 (2)